Re-examination of Energy Conservation Principle ‎in ‎Charged Capacitors and the Reported ‎Anomalous Energy ‎Devices



  • Eue Jin Jeong Tachyonics Institute of Technology Austin TX 78741 USA ‎



Energy Conservation, Capacitors, Anomalous Energy Devices


Energy conservation is one of the most fundamental and well-established principles of physics. E. Noether ‎extended the energy conservation principle to the quantum field theoretical domain in empty space by ‎relating the time-translation invariance of the universe with energy conservation. While this is the case in ‎an open empty space, it seems that the local space enclosed by conducting metallic plates has an ‎unexpected property, suggesting that the energy conservation principle may not necessarily apply to ‎localized bound systems of capacitors in electrodynamics. This point of view was raised by noting that the ‎spherical capacitor has calculable electrostatic self-potential energy in both the inner and outer shells, ‎which is not considered in the conventional consideration of the total energy stored in the capacitors. It ‎seems that the concept of moving charges one by one into the capacitor plates has helped bypass the ‎necessary steps to account for the additional repulsive self-potential energy that accumulates ‎simultaneously in both capacitor plates in the process of charging the capacitor. We present itemized ‎details of the repulsive potential energy stored in the capacitors and discuss its physical reality in relation to ‎the anomalous energy devices reported in the past.‎


Download data is not yet available.

Author Biography

Eue Jin Jeong, Tachyonics Institute of Technology Austin TX 78741 USA ‎

Eue Jin Jeong


T. H. M. (1944). Disclose Energy Research‎. The Salt Lake ‎Tribune‎, 150. ‎

Casimir, H. B., & Polder, D. J. P. R. (1948). The influence of ‎retardation on the London-van der Waals forces. 73(4), ‎‎360. ‎

Drude, P. J. A. d. p. (1900). Zur elektronentheorie der metalle. ‎‎306(3), 566-613. ‎

Einstein, A. J. A. d. P. (1905). On a heuristic point of view ‎concerning the production and transformation of light. 1-‎‎18. ‎

Forward, R. L. J. P. R. B. (1984). Extracting electrical energy ‎from the vacuum by cohesion of charged foliated ‎conductors. 30(4), 1700. ‎

Hess, H. J. J. f. P. C. (1842). Thermochemische ‎Untersuchungen. 27(1), 99-119. ‎

Jackson, J. D. (1999). Classical electrodynamics. In: ‎American Association of Physics Teachers.‎

Martin, T. C. (1977). The inventions, researches and writings ‎of Nikola Tesla: Рипол Классик.‎

Meyer, S. A. (1992). Process and apparatus for the ‎production of fuel gas and the enhanced release of ‎thermal energy from such gas. In: Google Patents.‎

Noether, E. J. Н. Э. (1959). Invariante ‎Variationsprobleme//Nachrichten von der Königlichen ‎Gesellschaft der Wissenschaften zu Göttingen. ‎Mathematisch-Physikalische Klasse. 1918. H. 2. S. 235–‎‎257. 611-630. ‎

Poynting, J. H. J. P. T. o. t. R. S. o. L. (1884). XV. On the ‎transfer of energy in the electromagnetic field. (175), 343-‎‎361. ‎

SIDAC Thyristors. Retrieved from ‎‎semiconductors/discrete-thyristors/sidac.aspx

Tesla, N. (1901). Apparatus for the utilization of radiant ‎energy. In: Google Patents.‎

Thomson, J. J. J. T. L., Edinburgh,, Magazine, D. P., & ‎Science, J. o. (1904). XXIV. On the structure of the atom: ‎an investigation of the stability and periods of oscillation ‎of a number of corpuscles arranged at equal intervals ‎around the circumference of a circle; with application of ‎the results to the theory of atomic structure. 7(39), 237-‎‎265.‎



How to Cite

Jeong, E. J. . (2022). Re-examination of Energy Conservation Principle ‎in ‎Charged Capacitors and the Reported ‎Anomalous Energy ‎Devices: Physics. International Journal of Fundamental Physical Sciences, 12(2), 1-8.