Measurement of the Magnetic Monopole Charge, the Missing Link in Quantum Mechanics, Aether and the Dark Energy
Relations between the Magnetic Monopole Neutrinos and Other Unsolved Mysteries of the Universe
DOI:
https://doi.org/10.14331/ijfps.2022.330152Keywords:
measurement of magnetic monopole charge, nonlocality problem of quantum mechanicsAbstract
Charge conservation in the theory of elementary particle physics is one of the best-established principles in physics. As such, if there are magnetic monopoles in the universe, magnetic charge will most likely be a conserved quantity like electric charges. If neutrinos are magnetic monopoles, as physicists have reported the possibility, the Earth should show signs of having magnetic monopole charge on a macroscopic scale since neutrons must also have magnetic monopole charge if general charge conservation principle is valid. To test this hypothesis, experiments were performed to detect the collective effect of magnetic monopole charge of neutrons on the earth's equator using two balanced high strength neodymium rod magnets. We were able to identify non-zero magnetic monopole charge of the individual neutrons from the experiments. The presence of individual magnetic monopole charges in the universe prompted proposition of the new symmetric form of Maxwell's equations. Based on the theoretical investigation of the new Maxwell's equations, we conclude that magnetic monopole neutrinos are the cause of the origin of quantum mechanical uncertainty, dark energy and the medium for electromagnetic wave propagation in space.
Downloads
References
Bialynicki-Birula, I., & Bialynicka-Birula, Z. J. P. R. D. (1971). Magnetic monopoles in the hydrodynamic formulation of quantum mechanics. 3(10), 2410.
Bilaniuk, O.-M., & Sudarshan, E. G. J. P. T. (1969). Particles beyond the light barrier. 22(5), 43-51. Bilaniuk, O., Deshpande, V., & Sudarshan, E. G. J. A. J. o. P. (1962). “Meta” relativity. 30(10), 718-723.
Chodos, A., Hauser, A. I., & Kostelecký, V. A. (1985). The neutrino as a tachyon.
Dirac, P. A. M. (1931). Quantised singularities in the electromagnetic field. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical Physical Character, 133(821), 60-72.
Einstein, A., Podolsky, B., & Rosen, N. J. P. r. (1935). Can quantum-mechanical description of physical reality be considered complete? , 47(10), 777.
Finlay, C. C., Maus, S., Beggan, C., Bondar, T., Chambodut, A., Chernova, T., . . . Hamoudi, M. J. G. J. I. (2010). International geomagnetic reference field: the eleventh generation. 183(3), 1216-1230.
Frampton, P. H., Glashow, S. L., & Van Dam, H. (2012). Third Workshop on Grand Unification: University of North Carolina, Chapel Hill April 15–17, 1982 (Vol. 6): Springer Science & Business Media.
Greene, B. R., Morrison, D. R., & Polchinski, J. J. P. o. t. N. A. o. S. (1998). String theory. 95(19), 11039-11040.
Jackiw, R. (2002). Dirac's magnetic monopoles (again). arXiv preprint hep-th/0212058.
Lineweaver, C. H., & Davis, T. M. J. S. A. (2005). Misconceptions about the big bang. 292(3), 36-45.
Loureiro, A., Cuceu, A., Abdalla, F. B., Moraes, B., Whiteway, L., McLeod, M., . . . Manera, M. J. P. R. L. (2019). Upper bound of neutrino masses from combined cosmological observations and particle physics experiments. 123(8), 081301.
Magnetic Fields and Forces Archived from the original on 2012-02-20. Retrieved 2009-12-24. (2009).
Pati, J. C., & Salam, A. (1994). Lepton number as the fourth “color”. In Selected Papers Of Abdus Salam: (With Commentary) (pp. 343-357): World Scientific.
Polyakov, A. M. (1974). Spectrum of particles in quantum field theory. J JETP Lett, 20, 430-433.
Recami, E. (1978). Tachyons, monopoles, and related topics.
Robertson, R., Bowles, T., Stephenson Jr, G., Wark, D., Wilkerson, J. F., & Knapp, D. J. P. r. l. (1991). Limit on ν e mass from observation of the β decay of molecular tritium. 67(8), 957.
Science, I. C. J. (2013). Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. 342(6161), 1242856.
Steyaert, J. (1988). The Neutrino as a Tachyonic Non-charged Light Magnetic Monopole? In Neutrino Physics (pp. 159-162): Springer.
t Hooft, G. J. N. P. B. (1974). Magnetic monopoles in unified theories. Nucl. Phys. B, 79(CERN-TH-1876), 276-284.
Trefil, J., Kelly, H., & Rood, R. J. N. (1983). Magnetic monopoles and the solar neutrino problem. 302(5904), 111-113.
Uggla, C. (2006). Spacetime singularities. Einstein Online, 2(2006), 1002.
University of Waikato (Producer). Retrieved from http://www.sciencelearn.org.nz

Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Fundamental Journals

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.