Entropy Decrease in Isolated Systems: Theory, Fact and Tests


  • Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China
Keywords: Entropy, Internal interaction, Isolated system, Condensed matter, Self-assembly, Solidification, Molecular motor, Biology, Astronomy


First, we emphasize that preconditions of entropy increase are 1) for isolated systems; 2) various internal interactions in system must be neglected; 3) they must be thermal equilibrium processes. We proposed possible entropy decrease due to fluctuation magnified and internal interactions in isolated systems, and research various possible entropy decreases in physics, which include phase transformation from disorder uniformity to order state. Next, the solidification forms spontaneously an order structure, and it may be process of entropy decrease. Third, we propose that entropy decrease exists necessarily in self-assembly as isolated system. Fourth, we discuss the molecular motor and entropy decreases in biology. Fifth, we research entropy decrease in astronomy and propose quantitatively a total formula of entropy change for universal evolution of any natural and social systems. As long as we break through the bondage of the second law of thermodynamics, the rich and complex world is full of examples of entropy decrease.


Download data is not yet available.

Author Biography

Yi-Fang Chang, Department of Physics, Yunnan University, Kunming, 650091, China

Biography of Prof Yi-Fang Chang


Professor Yi-Fang Chang is academic member of Department of Physics, Yunnan University, China. He is study and work from 1978 till now in Department of Physics, Yunnan University. He is working in research theoretical physics and Cross-cutting science. So far, published 400 papers by Chinese and English. He is also Editor of International Journal of Modern Theoretical Physics.


Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024.

Ashby, W. R. (1961). An introduction to cybernetics: Chapman & Hall Ltd.

Berillo, D., Mattiasson, B., Galaev, I. Y., & Kirsebom, H. (2012). Formation of macroporous self-assembled hydrogels through cryogelation of Fmoc–Phe–Phe. Journal of colloid and interface science, 368(1), 226-230.

Bezryadin, A., Westervelt, R., & Tinkham, M. (1999). Self-assembled chains of graphitized carbon nanoparticles. Applied Physics Letters, 74(18), 2699-2701.

Bott, M., Hohage, M., Morgenstern, M., Michely, T., & Comsa, G. (1996). New approach for determination of diffusion parameters of adatoms. Physical review letters, 76(8), 1304.

Boyanovsky, D. (2018). Imprint of entanglement entropy in the power spectrum of inflationary fluctuations. Physical Review D, 98(2), 023515.

Brune, H., Röder, H., Boragno, C., & Kern, K. (1994). Microscopic view of nucleation on surfaces. Physical review letters, 73(14), 1955.

Chang, Y.-F. Entropy Change in Biological Thermodynamics. 6(6), 5.

Chang, Y.-F. (1994). Internal mechanism of isolated systems and new research on limitations of second law of thermodynamics. Entropy, Information and Intersecting Science, 53-60.

Chang, Y.-F. (2005). Entropy, fluctuation magnified and internal interactions. Entropy, 7(3), 190-198.

Chang, Y.-F. (2006a). Entropy Change in Biological Thermodynamics.

Chang, Y.-F. (2006b). Possible Entropy Decrease in Condensed Matter Physics and Necessity of Entropy Decrease in Self-Assembly.

Chang, Y.-F. (2013a). Grand unified theory applied to gravitational collapse, entropy decrease in astronomy, singularity and quantum fluctuation. International Journal of Modern Applied Physics, 3, 8-25.

Chang, Y.-F. (2013b). Possible Entropy Decrease in Biology and Some Research of Biothermodynamics. NeuroQuantology, 11(2).

Chang, Y.-F. (2013c). Social thermodynamics, social hydrodynamics and some mathematical applications in social sciences. International Journal of Modern Social Sciences, 94-108.

Chang, Y.-F. (2014). Catalyst theory, entropy decrease in isolated system and transformation of internal energy. Int. J. Modern Chem, 6(2), 74-86.

Chang, Y.-F. (2015a). Entropy decrease in isolated system and its quantitative calculations in thermodynamics of microstructure. Int. J. Mod. Theor. Phys, 4, 1-15.

Chang, Y.-F. (2015b). Topological physics, topological sciences and new research of string. International Journal of Mod-em Mathematical Sciences, 13(1), 86-100.

Chang, Y.-F. (2018). Extensive Quantum Theory of Parapsychology and Its Tests. World Institute for Scientific Exploration (WISE) Journal, 7, 72-80.

Chang, Y.-F. (2019). At Ultra-Low Energy Possible Violation of Pauli Exclusion Principle and Its Possible Mechanism and Predictions (ResearchGate) June 2019 Projects· particle physics.

Chang, Y.-F., Adejo, S. O., Gbertyo, J. A., Ahile, J. U., Sadiq, I., Izuagie, T., . . . Abubakar, S. (2013). Chemical reactions and possible entropy decrease in isolated system. International Journal of Modern Chemistry, 4(3), 126-136.

Chen, P., Luo, Z., Güven, S., Tasoglu, S., Ganesan, A. V., Weng, A., & Demirci, U. (2014). Microscale assembly directed by liquid‐based template. Advanced materials, 26(34), 5936-5941.

Crane, H. (1950). Principles and problems of biological growth. The Scientific Monthly, 70(6), 376-389.

Davies, P. C. W., & Davies, P. (1984). God and the new physics: Simon and Schuster.

Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H., & Nagayama, K. (1992). Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 8(12), 3183-3190.

Gandin, C.-A., & Rappaz, M. (1994). A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes. Acta metallurgica et materialia, 42(7), 2233-2246.

Garcia, J. C., Justo, J., Machado, W., & Assali, L. (2009). Functionalized adamantane: Building blocks for nanostructure self-assembly. Physical Review B, 80(12), 125421.

Groß, R., & Dorigo, M. (2008). Self-assembly at the macroscopic scale. Proceedings of the IEEE, 96(9), 1490-1508.

Groβ, R., & Dorigo, M. (2008). Evolution of solitary and group transport behaviors for autonomous robots capable of self-assembling. Adaptive Behavior, 16(5), 285-305.

Halley, J. D., & Winkler, D. A. (2008). Consistent concepts of self‐organization and self‐assembly. Complexity, 14(2), 10-17.

Hatsopoulos, G. N., Keenan, J. H., & Butler, H. (1966). Principles of general thermodynamics: American Society of Mechanical Engineers Digital Collection.

Hokikian, J., Planck, M., & Grant, L. Earth Day, Clean Energy, and Entropy.

Hosein, I. D., & Liddell, C. M. (2007a). Convectively assembled asymmetric dimer-based colloidal crystals. Langmuir, 23(21), 10479-10485.

Hosein, I. D., & Liddell, C. M. (2007b). Convectively assembled nonspherical mushroom cap-based colloidal crystals. Langmuir, 23(17), 8810-8814.

Hosokawa, K., Shimoyama, I., & Miura, H. (1994). Dynamics of self-assembling systems: Analogy with chemical kinetics. Artificial Life, 1(4), 413-427.

Hwang, R., Schröder, J., Günther, C., & Behm, R. (1991). Fractal growth of two-dimensional islands: Au on Ru (0001). Physical review letters, 67(23), 3279.

Ignatova, Z., Martínez-Pérez, I., & Zimmermann, K.-H. (2008). DNA computing models: Springer Science & Business Media.

Jantsch, E. (1979). The Self-Organizing. Universe. Pergamon.

Jülicher, F., & Prost, J. (1995). Cooperative molecular motors. Physical review letters, 75(13), 2618.

Karma, A., & Rappel, W.-J. (1996). Phase-field method for computationally efficient modeling of solidification with arbitrary interface kinetics. Physical Review E, 53(4), R3017.

Karp, G. (2002). Cell and Molecular Biology . New York: John & Whley Sons: Inc.

Kobayashi, R., Warren, J. A., & Carter, W. C. (2000). A continuum model of grain boundaries. Physica D: Nonlinear Phenomena, 140(1-2), 141-150.

Konieczny, P. (2020). Macro-level Differences in Participation in Sharing Economy: Factors Affecting Contributions to the Collective Intelligence Wikipedia Platform across Different Asian Countries. Asian Journal of Social Science, 48(1-2), 115-149.

Kurz, W., & Fisher, D. (1998). Fundamentals of solidification (Switzerland. Trans Tech Publications, 66.

Landau, L. D., Lifšic, E. M., Lifshitz, E. M., & Pitaevskii, L. (1980). Statistical physics: theory of the condensed state (Vol. 9): Butterworth-Heinemann.

Lange, F. (1996). Chemical solution routes to single-crystal thin films. Science, 273(5277), 903-909.

Langer, J., & Müller-Krumbhaar, H. (1978). Theory of dendritic growth—I. Elements of a stability analysis. Acta Metallurgica, 26(11), 1681-1687.

Lantz, N. D., Luke, W. L., & May, E. C. (1994). Target and sender dependencies in anomalous cognition experiments. The Journal of Parapsychology, 58(3), 285-303.

Lee, J. A., Meng, L., Norris, D. J., Scriven, L., & Tsapatsis, M. (2006). Colloidal crystal layers of hexagonal nanoplates by convective assembly. Langmuir, 22(12), 5217-5219.

May, E. C., Spottiswoode, S., & James, C. L. (1994). Shannon entropy as an intrinsic target property: Toward a reductionist model of anomalous cognition. Submitted for publication.

Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., . . . Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669.

Quarati, P., Lissia, M., & Scarfone, A. M. (2016). Negentropy in many-body quantum systems. Entropy, 18(2), 63.

Quarati, P., Scarfone, A. M., & Kaniadakis, G. (2018). Energy from negentropy of non-Cahotic systems. Entropy, 20(2), 113.

Ramsey, N. F. (1956). Thermodynamics and statistical mechanics at negative absolute temperatures. Physical Review, 103(1), 20.

Reichl, L. (1980). A Modern Course in Statistical Physics (Austin, TX: University of Texas Press.

Rifkin, J. (1980). Entropy: a new world view.[social and political implications of the Second Law of Thermodynamics].

Röder, H., Bromann, K., Brune, H., & Kern, K. (1995). Diffusion-limited aggregation with active edge diffusion. Physical review letters, 74(16), 3217.

Roldán, M. J. P., García, C. P., Marchesini, G., Gilliland, D., Ceccone, G., Mehn, D., . . . Rossi, F. (2011). Chemical modification and patterning of self assembled monolayers using scanning electron and ion-beam lithography. Microelectronic engineering, 88(8), 1948-1950.

Samal, S., & Geckeler, K. E. (2001). Unexpected solute aggregation in water on dilution. Chemical Communications(21), 2224-2225.

Schmidt, K. H. (1974). M. HARWIT: Astrophysical Concepts. John Wiley & Sons Ltd. New York, London, Sydney, Toronto. XIV+ 561 Seiten, 138 Abbildungen.£ 6.95. Astronomische Nachrichten, 295(4), 201-201.

Serway, R. A., & Faughn, J. S. (2004). Física: Cengage Learning Editores.

Stengers, I. (1984). Order out of Chaos: Man's new dialogue with nature: Bantam Books.

Stephenson, C., & Hubler, A. (2015). Stability and conductivity of self assembled wires in a transverse electric field. Scientific reports, 5, 15044.

Tabti, M., Eddahbi, A., Ouaskit, S., & Elarroum, L. (2012). Melting of argon cluster: Dependence of caloric curves on MD simulation parameters.

Ulman, A. (1998). Thin films: advances in research and development. 24. Self-assembled monolayers of thiols: Academic Press.

Uskoković, V. (2008). Isn't self-assembly a misnomer? Multi-disciplinary arguments in favor of co-assembly. Advances in Colloid and Interface Science, 141(1-2), 37-47.

Vvedensky, D., Zangwill, A., Luse, C., & Wilby, M. (1993). Stochastic equations of motion for epitaxial growth. Physical Review E, 48(2), 852.

Whitesides, G. M., & Boncheva, M. (2002). Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences, 99(8), 4769-4774.

Winfree, E., Liu, F., Wenzler, L. A., & Seeman, N. C. (1998). Design and self-assembly of two-dimensional DNA crystals. Nature, 394(6693), 539-544.

Yagi, K., Hatsuda, T., & Miake, Y. (2005). Quark-gluon plasma: From big bang to little bang (Vol. 23): Cambridge University Press.

Yi-Fang, C. (1997). Possible decrease of entropy due to internal interactions in isolated systems. Apeiron, 4(4), 97-99.

Yildiz, A., Forkey, J. N., McKinney, S. A., Ha, T., Goldman, Y. E., & Selvin, P. R. (2003). Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science, 300(5628), 2061-2065.

Zhou, Y., Zhang, Y., Wang, Y., & Chen, G. (2007). Microstructure and compressive properties of multicomponent Alx (TiVCrMnFeCoNiCu) 100− x high-entropy alloys. Materials Science and Engineering: A, 454, 260-265.

How to Cite
Chang, Y.-F. (2020). Entropy Decrease in Isolated Systems: Theory, Fact and Tests. International Journal of Fundamental Physical Sciences (IJFPS), 10(2), 16-25. https://doi.org/10.14331/ijfps.2020.330137