Von Neumann Entropy by Logarithmic Method

Mathematics-Physics

Keywords: von Neumann, entropy

Abstract

The Von Neumann entropy plays a central role in the quantum information theory and is a concave function and following the property  . In this paper, we introduce a new proof for the linearity of Von Neumann entropy in the rate without using the above inequality. Here the Von Neumann entropy is concave; that is, given weights   and density matrices . Roughly speaking, we will show that in the rate case, the Von Neumann entropy is linear without using Fannes inequality.

Downloads

Download data is not yet available.

Author Biography

Bijan Nikouravan

Biography of Associate Prof. Bijan Nikouravan

Bijan1.jpg

Prof. Dr. B. Nikouravan conducted research on the gravitational field of elliptical objects and ‎General Relativity, Theoretical Astrophysics and New Exoplanets, Cosmology, Atmospheric Physics, Structure of stars, Earthquake, Geophysics.

References

Audenaert, K. M. (2007). A sharp continuity estimate for the

von Neumann entropy. Journal of Physics A: Mathematical

and Theoretical, 40(28), 8127.

Garbaczewski, P. (2005). Differential entropy and time.

Entropy, 7(4), 253-299.

Jaeger, G. (2007). Quantum information: Springer.

Jaynes, E. T. (1965). Gibbs vs Boltzmann entropies.

American Journal of Physics, 33(5), 391-398.

Kullback, S. (1968). Information Theory and Statistics.

Courier Corporation. image analysis. Composites Science

and Technology, 59(4), 543-545.

Neumann, J. v. (2013). Mathematische grundlagen der

quantenmechanik (Vol. 38): Springer-Verlag.

Nielsen, M. A., & Chuang, I. L. (2000). Quantum

information and quantum computation. Cambridge:

Cambridge University Press, 2(8), 23.

Shannon, C. E. (1948). A mathematical theory of

communication. Bell system technical journal, 27(3), 379-

Tomamichel, M., Colbeck, R., & Renner, R. (2010). Duality

between smooth min-and max-entropies. IEEE

Transactions on information theory, 56(9), 4674-4681.

von NEUMANN, J., & BEYER, R. T. (1955). Mathematische

Grundlagen der Quantenmechanik. Mathematical

Foundations of Quantum Mechanics... Translated... by

Robert T. Beyer: Princeton University Press.

Published
2019-12-30
How to Cite
Nikouravan, B. (2019). Von Neumann Entropy by Logarithmic Method. International Journal of Fundamental Physical Sciences (IJFPS), 9(4), 55-58. https://doi.org/10.14331/ijfps.2019.330132
Section
Articles