Determination of Escape Speed from de Broglie-Bohm Interpretation

Escape Speed

Authors

  • Ch’ng Han Siong School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor D.E. Malaysia
  • Shahidan Radiman School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor D.E. Malaysia

DOI:

https://doi.org/10.14331/ijfps.2013.330043

Keywords:

de Broglie-Bohm interpretation, escape speed, Newton’s law of gravitation, ionization energy of hydrogen atom

Abstract

In this study, we apply the standard quantization procedure to the Newtonian equation to obtain the Schrödinger equation. The wave function is obtained and subsequently the de Broglie-Bohm interpretation is applied to the wave function to yield the formulas for escape speed. It is shown that the usual Newtonian formula for escape speed is purely resulted from taking the asymptotic form of Bessel functions. We then extend our work to hydrogen atom and show that the work done to eject the electron away from proton is in discrete form. The ionization energy for ground state of hydrogen atom from escape kinetic energy method is obtained.

 

 

Downloads

Download data is not yet available.

Author Biography

Shahidan Radiman, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi, Selangor D.E. Malaysia

 

REFERENCES

Atiq, M., Karamian, M., & Golshani, M. (2009). A Quasi-Newtonian Approach to Bohmian Mechanics I: Quantum Potential. Paper presented at the Annales de la Fondation Louis de Broglie.
Griffiths, D. J., & Dick, G. (1995). Introduction to quantum mechanics. Physics Today, 48, 94.
Holland, P. R. (1995). The quantum theory of motion: an account of the de Broglie-Bohm causal interpretation of quantum mechanics: Cambridge university press.
Lea, S. M. (2004). Mathematics for physicists (eBook ed.): Belmont, CA : Brooks/Cole-Thomson Learning, ©2004.
Polyanin, A. D., & Zaitsev, V. F. (2002). Handbook of exact solutions for ordinary differential equations: Chapman & Hall/CRC.
Spiegel, M. R., & Liu, J. (1999). Schaum's Outline of Mathematical Handbook of Formulas and Tables: Schaum Pub. Co.
Vuille, C., Serway, R. A., & Faughn, J. S. (2009). College physics. Belmont, CA: Brooks/Cole, Cengage Learning, 355.

Downloads

Published

2013-03-31

How to Cite

Han Siong, C. ., & Radiman, S. . (2013). Determination of Escape Speed from de Broglie-Bohm Interpretation: Escape Speed. International Journal of Fundamental Physical Sciences, 3(1), 1-4. https://doi.org/10.14331/ijfps.2013.330043

Issue

Section

ORIGINAL ARTICLES