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ABSTRACT

In this paper, we deal with the multiplicity of positive solutions for a class of (p , q)-Lalpacian system. Moreover the author
established suitable conditions under which, the problem has positive solutions.
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INTRODUCTION

In this paper, we study the existence of positive solutions
for the following (p,, p,)-Laplacian system.

(ppl (ull) + hl(t)fl(ulﬁuZ) = O,t € (0!1)
@p, W) + hy (D) f>(ug,up) = 0,
u;(0) = u (1) = u,(0) = u,(0).
(1)
Where ¢, (x) = [x[P2x, p;>Lx €@, ('), fi€

C([0,1] x R* x R*,R*), Au>0, f£(0,00)=0,for

i=1,2, h; € L},., h; € X;, where

1 1
h. eIt JEop ! (J2Ih(r)dr)ds +
14

X, =
l o fls (p;il(ff|hi(r)|dr)ds < 0
2 2

@

17

In recent years, many authors have studied the existence of
positive  solutions for boundary value problems. For
example (Liang & Zhang, 2009; Pang, Lian, & Ge, 2007;
Sun & Ge, 2007) have studied the existence of positive
solutions for some boundary value problems. The existence
of three positive solutions for the problem,

((pp(u’(x))’ + Ah(x)f(u(x)) =0,x€(0,1)
u(0) =u(1)=0. *

was studied by (Sim & Tanaka, 2015). Cheng and L (2012)
studied the existence of solutions for some nonlinear
eigenvalue (p,q)-Laplacian system. (Lee, Kim, & Lee,
2014) have studied the existence of solutions for ,
((pp(u’(x))’ + h(x)f(u(x)) =0 ,x€ (0,1
u(0) =u(1) =0. **

In this paper we extend the existence result of (x), (x*) to
the problem (1).
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PRELIMINARIES

Let

€101 = {(uy,uz) € (C[01] x €[01])  (€1[0,1] x €1[0,1]| 7% < NiMemorme(D (1) < o)

Where
1

' ) 1
( ‘Pzil(fl lhi(s)lds)) ,0<t<>

m;hy(t) = 2 -1
t 1
ot(], I()lds) 5 <t<1
2 @
m;(t) = min{m;h;(¢t), 1}, (4).

We define
i llm; = llilleo + llmiullo

Let || (uy, u2)llz = llugllm, + lluzllm,- So (C[0,1], I 1I2)
is a Banach space.

Let K = {(uq,uy) € C;[0,1]|w;(0) =u;(1) =0,i = 1,2}
and

i (o0 (1 2)) = L2 0 (el () ar ) s,

Ix '
0<t<s-
w;(£) = ) L , 4
1 go;.l (_q’pi (u{ (—)) - Ji ®p, (u{ (r)) dr) ds,
L RS
l<t<i
2
Then (u, (t), u,(t)) isasolution of problem (1). We define
1
oo (0 (11 ) i) + PG () ) s,
° 0<ts<?,
Ti(u1(t); uz(t)) = 3 ) s (%)
ol (=0we (1 (3)) rifian ) + 5 1) i (), () dr ) s,
‘ l<t<1
2
And  T(uy,uy) = (T1(u1'u2)' Tz(upuz)); (uy,uy) € K. [(T; Uy, U2y)) (D] <
solution of problem (1). ri (1%” ri 1(2) (hefuCan, )|
_ J2IRIfi i (5), un (D) ds)
Theorem (1)  Operator T:K - K is completely 1
. — 2
continuous < 05O+ T, [ I)lds < 2 (050 G
t
Proof. Suppose G; X G, be a bounded subset of K. We _ 2
prove T (uy,, up,) is relative compact for a sequence +<P£i1(ﬁ)<P£l—1(f |hi(s)lds))
{(uyp Uzpn)} € Gy X Gy We show that if (ugg,up) € K ¢ (©)
and there is a subsequence T (Uyny, Uzng) OF T (Uyqy, Usp) Where
such that T'(uqpg, Upn) = (Ugq, Ugz) Where [ — oo in K -
and T is continuous on K. We prove o= se[rpz%),(ac]lﬁ(ul(s)' Uz () Ap,
{1 Ty Uy, Upp), (M Ty (Ugp, Up,)}  is uniform bounded _{ 1, p>2
in C,[0,1]. T 2@ P 1 < p, <2
Since  G; X G, is bounded in K, there exists A; >0 . @)
Such that  [luglle + Uzl < A¢  and  |lmy uflle + So,
! H ! 1
[lmg uslle < Ag, for (ug,uy) € Gy X G,. Thereis Az >0 mi(t)(P;il (ff|hz(5)|d5) <1, (8)

so that |‘pm (u{ G)) (hifl-(ul,uz))| < Ag.

Similar to (Lee et al., 2014), we have

18

then for t € (0, %)

m; (O] (T; (uin (), Uz (D)) € Ay, (@51 (26) + 95 ()

©)
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thus,
|(my (Ty (U, Uan))'s Mo (T2 (U, 1_¢2n))’) |
< A, (9, (A6) + 9, (f1))
+ A, (05, (A5) + 0, (2))

Similarly, we can find the same upper bound of
(ml(Tl(u1n,u2n))’,thUS

{1 (T (Ui Uzp)) s Mp (T2 (Ui, Uz )"}

is bounded. Suppose that h; € L1(0,1) , Since ||m;ul,|le <
Ag, then |uf,| < As(m) ™t € L1(0,1). SO {(uyp, Upy) }is
equicontinuous in C[0,1] x €[0,1] and by Arzela-Ascoli
theorem, there exist a sequence {(Uink,Uznk)}  Of
{(uy,uzr)} and (vq,v,) € C[0,1] X C[0,1] such that
{(uink Uani) } = (v1,v2) -

Thus we have,
(05 @ (0p,th (3)) (i Ctansr tom)
L2 B i (5), Ui (5)) dS) =
(05 @, (092 (3)) (ifi v, 02))

+ 2 hi() i (01(), va()) ),
(10)

ThU_S { (my (Ty (Ugn, Uzn))', My (T (Uin, U2,))'} S
equicontinuous.

If h; € X; \ L(0,1), {(my (Ty (t1p, U20))", Mo (T2 (U, Upn))'}

is not equicontinuous. Thus there exists & > 0 such that a
sequence {(Uink Uznk) } OF {(uin, Uzn) 3 and sequence
{te}, {s,} © (0,1) satisfying

| (m; (T; (Uanier Uoni))' () — My (T; (Wanie Uznk)) (S| = €,
(11)

[t — skl <% , we show that gim t, =0 or 1. Ifitis not
true, thus ;lll?o t, =ty € (0,1) . Let n satisfying 0 < n, <

min{ty, 1 — to}, S0 h; € L*[n;, 1 — n;] and u;p, — v;. Then
we prove that {m;(T;(us,, u,))'} is equicontinuous. So
there is sufficiently large N € N such that

|(m; (T; Uy, Uznn))' (En)
— my (T Uiy, Uznn)) (SWI < €
(12)
and this contradicts with (11). Consider gim ty =

lim s, = 0. lim ¢, = lim s, =1 issimilar. Then we get,
k—>o k—oo

k—oo

(M (T; Uynks Uppi))' () =
05 P 00, (4 (2)) (refiatines )
P (6 [2 R ()i (e (), e () s,
(13)
So,
lim P 6y, (15 (2)) (hefiCane o)) =0 (14)
Since u;,, — v;. We have

1

tim (60 [ 1) (11 (5), e (5))

~ (fi(11(), v2(s))ds
(15)

< lim m?=1(6) J2 R (5)ds]| i1t (S), () —
(ﬁ(v1(5): () (5))”00
i 1 (10 5), () = (i3 (), w2 ()] = .
Now, we get

Jim m?2z) [ RSYCIORIONE

_{ﬁmn)m>o
~ 1=£.(0,0),h; > 0

1
ml=i(t,) = (JZ Ihi(s)| ds)~" implies that

lim m?=2 (1) [ hy(9)fi(1(5),v2(s))ds =

. ft% hi(8)fi(v1(s), v,(s))ds
lim - .
ft5|hi(5)|d5

t-0t

(16)
for h;fi(v,,v,) € Ll((o,%) X (0, %)) we have f(0,0) = 0.

tlir(gfti|hi(5)|d5=°° implies that the limit (16) is
0. hi()fi (v (), v2()) € L1 [£.5]

Using L’Hospital’s rule, we have

. , _ £:(0,0),h; >0
Jim m Ty o w2 (6 = 4 70" 70

17)

Ilim (m; (T; (Ugnper Uzni))' (t) = 0 and this contradicts with

(11).

Thus {((my (Ty (Uink Uzni))'s (M2 (T2 (Winge, Uzni))'} 1S

equicontinuous in C[0,1] x C[0,1].

Suppose that (11, Uy,) = (ily, ;) in K. Since G; X G, is

compact, there is a sequence {(uynj, uzn;)} and (vy,v,) €

K such that (T; (Wi, Uznk)s (T2 (Uinks Uznk)) = (V1,V2)

We Know that T is continuous and (uyy,, Uzpj) = (i, il3),

So o (Tl(ulnkvMer.k):"(TZ (ulnllft:u‘?nk)) - (Ty (i, i),

T, (g, iip)) then (T, (ily, iiy), T, (ily, ii5)) = (v4,v,) thus

T is continuous on K.

Definition (2) For (a,, ay) € C?([0,1], R), (a;, ;) is said
to be a lower (strict lower) solution of

¥p,(W2") + G(uy, up) =0,

{‘Ppl (w) + F(uy,up) =0,t € (0,1)
u;(0) = uy (1) = u,(0) = u,(0).

(@, () + F(aa(8), az(1) 2 0,(>),t € (0,1)
it {90 (@2(0) + 6(02(0, 2,(0) 20, ()
a,(0) < 0 (< 0),a,(0) <0 (< 0),
l a,(0) < 0 (< 0),a,(1) < 0 (< 0).
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An upper (strict upper) solution (B, ;) € C?[0,1] x
C?[0,1] can also be defined if it satisfies the reverse of the
above inequalities.

RESULTS

Theorem (3) Suppose that there exist a strict lower solution
(a4, a3) and a strict upper solution (B;, 8,) of (1) such that
(a1, a3) < (B1,B2)- Then problem (1) has at least one
solution (uq,u,) suchthat (a;, a;) < (uq,uy) < (By, B2).
Then the Leray-Schauder degree is deg(/— ,0) =1,
(16) where,

Q=
{(uy, up) € Kl|(ay, ap) < (ug,uz) < (B, B2), 1 (ug, u)ll, <7}
forr>0.
Proof. Let

®p, (W' (1)) + hy () f1(8(wy (£),u2(8))) =0, t € (0,1),
®p, (W' () + hi (O f1(6(uy (£), u2(8))) = 0
u1(0) = uy (1) = u,(0) = u,(0)

(18)
Where §:R X R — R X R is defined by
(B1, B2), (ug, uz) > (B, B2)
O(ug, up) = { (uy, up), (g, az) < (ug, uz) < (B, B2),
(ay, @), (uy,up) < (@, a3)
(19)

If  (uy,uy) be a solution of (18), then (ay,a;) <
(uq,uy) < (By,B2) and (uq,u,) is a solution of (1). Let
T: K - K such that T(uy,uy,) = T(6(uy,uy)) so T is
bounded and there exists r > 1 such that ||T(uy, uy)|l, <r
for (uy,u,) € K. So we have,

deg(I — T, B,(0),0) = deg(I,B,(0),0) =1 (20)
Where  B.(0) = {(uy,up) € K| ||(uq, up)ll; <7} Thus
(18) has a solution and (1) has a solution (u,,u,) satisfying

(aq, ap) < (uqg,uy) < (Bq, B2). From (20) we have

deg(I — T,0,0) =deg(I — T,Q,0)
= deg(1,B.(0),0) = 1.

(21)
Theorem (4) Suppose that
((11,0(2) < (.311.82) < (yllYZ) ’
(a1, a2) < (M1,12) < (Y1, 72)
(22)

where (aq,a;) is a lower solution , (y;,y2) an upper
solution, (n,,n,) astrict lower solution and (8, 8,) a strict
upper solution of (1) and there exists t, € [0,1] such that

(B1(to), B2(t0)) < (M1(t0),12(t0))-

Then problem (1) has at least three solutions
(uqg,up), W'y, u'y), W'y, u",) such that

(ay, a3) < (ug, uz) < (By, B2),

Mu,n2) < Wi, u'z) < (1, v2)
(23)

", u"3) € ([ag, v1] X [az, 2D \

20

(([051'31] X [az, B2DU([n1, v1] X [772:]’2]))-

Proof. Let
@p, Uy ()" + h (O 1wy (8),u2(£))) =0, t € (0,1),
Op, (" ()" + hy (O f1 (8 (e (t),uz(t))) =0
1 (0) = 1y (1) = u,(0) = u,(0).

(24)
Where §: R x R — R x R is defined by
i, 72), (ug, uz) > (¥1,72)
S(ug, up) = (ug, up), (ay, az) < (ug,uz) < (¥1,72)
(ay, a3), (ug, up) < (aq, @3)
(25)

We know that (a; — &, a, + €), (y; + €,7, + €) are strict
lower solution and strict upper solution of (24). Thus, if
(uqy,uy) isasolution of (24), then
(a; —g,a; + &) < (ag,az) < (ug,up)
SUuy) < t+ev, o).

Theorem 1, implies that there is a sufficient » > 0 such that
the following satisfying,

(a; —ga,—¢) < (u1,u2)}
Q ={ Uu,uU,) EK
1 =100 €K g ), N ul, <7
M) < (U, uy) <
Q, = { Uy, Uy) € K| }
2 =) €K ey, + ol w)ll, < 7
(a1 —&a; —¢€) < (u,up) < }
0, = ) €
s =) €K ey, + o)l )il < 7
letTs: K — K isdefined by T s(uq, u,) () = T(6(uq, uy)).
Thus we have deg(l — T, Q3 \ (Q; UQ,),0) = —1. So
there are three solutions of (24), (w,up) € Q,,
Wwy,u'y) e, (W,u",) e\ (Q UQ,). Suppose
that
@p, (") + 2R (O f1(ug,uz) = 0,t € (0,1)
®p, (W2")" + A2hy (O f2(ug, uz) =0,
u;(0) = uy (1) = u,(0) = u,(0).
(26)
Where
A; >0,k >0,
) iy M © =10

u, 0
;) 1im 289D _
Ui-oo Ppy (ug)
Hy) lim 2922 = o and

Uz00 Pp2 (U2)
H,) f; is nondecreasing.

)

Theorem (5) Suppose (H;)— (H,) hold a>0,b>

p1-1
0,c>0,d>0 such that a<bh,c<d and =
1(a,0)
ppi-1 b2t apz-1 gl B
T , T where r; = 4Pi(——==—) and
a0 f200,0) 2 f,(0.0) ' ( hy )

u; the solution of
op, () + h(©) =0, ©;(0) =u(1)=0 (27)

then for 6; > 0 satisfying
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pP1-1

< ab1-1
rl —1
f1(b,0) Iy 1B

0, < ———= ,
1 f1(a,0)||u1||1[,)01 t
apz2—1

< cb2—1
YD —————%,=1
£200,d)[u|IB2

62< p2—1

fz(o C)”uZlIoo

(28)
problem (26) has three positive solutions.

Proof. From (28) it is easy to see that (a,, a,) = (0,0) is
a lower solution of (26).

Suppose (By,8,) = (a (”uﬁw) ¢ (2-)). We have

p1— p1—-1
“on (40) =, 1||”1“””1(1) TR

> 0,h,(t)f1(a,0) = 6,hy () f1(B1(2), 0).

(29)
)) is an upper solution

— Ui
Thus (B, B) = (a (||u1||oo)’c (uuzuoo
of (26). Now, let (u;,u,) be a solution of (26) and

(uy, uz) < (B, B2) = (a (||ulﬁloo)'C (Iluljloo))’

we show

that (uy,u,) < (B, B2) . Otherwise, there exist t; < t,
such that  (uj(tz), uz(tz)) < (By'(t2), B2’ (t2)) and
(ua (t1), up (1)) = (By'(t1), B2 (t1))
Then we have
0< f 0,y (5) 13 (5), 15(5)
+ 0;h; (S)ﬁ(ﬁ1 (8), B2(s))
<f Pp; (ul (S)) (ppi(ﬁi (S)) ds <0,
(30)
It is a contradiction. Since
03, (' () =0, (8/(®)) > 0,t € (0,1),
(31)

Thereise € (0,1) such that

(ui(e),uz(€)) > (Bi'(e), B,'(€)) if not (ug(e),uz(e)) <
(B'(e), B;'(e)) sowehave @, (u;'(1)) — ¢, (B;' (1)) >

@p, (W' (@) = 9, (B;'(d) >0 and thus mu;'(1) >
miﬁi’(l) then
mB;' (1) = tllql_ m (B (t) =
L abP1~1
-, '(—a;| ———h; | +
lim 1 o ‘(nuluﬁ.’;‘l )
1 -1t
ST M h()ds) | f h(s)ds) |
2 p1—1 ) 1
llug 227" J2 |

apl_l
= (pp._l - |
‘ Nl 12

L’Hospital’s rule, implies that

myy;' (1) = tliql_ m; (' (t) =

21

1
<pp;1<fg hi(s)ds)
—@p, M (—a; (0:hifi(uy, uz)) +

|| ) fitur() 1))

a'(ezihifi(ulvuz))

lim
t—->1"

= lim — ¢, (-

i Fi hi(s)ds
[ 6,huf g )
2 ff h;(s)ds
16,1, (5) (s (5), 3 (5))ds)
el [ hi(s)ds) )
. 0k ()fi (u (8, 1,(8)
“ o AR TCHE

= 9o, (= Jim 6,£i (s (6),u2(6)) = 0, (—6.£(0,0)

aP171£(0,0)

Fori=1 we have mqu;(1) > - -
1 1( ) (ppl ( f1(a,0)||u1||€ol 1)
1( qbP1~1 >
> N——=m B
o Tgt) T ™AW

Thus myui(1) > m,B{(1) we proved (B;,B,) is a strict
upper solution of (26).

, k, j>1 satisfying

pP1-1
1 p1—-1 <
f1(0,0)llu1lle

Now, let 67

01h1f1(b,0)
4P1ppP1—-1 °

0; <0y, 1< (k)P <
Suppose that n, be the solution of

Pp, (1(0)" + 01 hafy (w1 (), v, () = 0,
n,(0) =1,(1) =0,

Where v, (t) = bt (t), v,(t) = dt,(t), and

. 1
1-(1-@k)/,0<t<-
_ 4
Ti(t)_ 1 1
1 ,—<t<-
4 2
So we have

HORT S KT NACIORAIE
t
S RNCIIACHOREONE

11
= (01h,f1(b,0) Z)pl‘l > v (t).
then (ny,1,) > (v, v;), we can see that
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1
(ppi_l(ft% h’i (S)ds)
I @p, (@i (0:hifi(ug,uz)) +
X

mu;'(0) = tl_i)rgl)f m;(Du; () = tl_igL

f 20, ()i (un (5), ua (5))ds)

t

01 (8) s (8), u (6))
h; (t)

= 6,£;(0,0) > 0 = m;n;'(0).

We conclude that (uq,u;) = (n4,712). Thus (n4,m,) is a
strict lower solution of (26).

— -1 li
= . 1m
(ppl (t—>0+
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