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ABSTRACT 

 
Gravity and time are necessarily related to each other. Gravity affects the measurement of time. In contrast time too affects the 

measurement of gravity. Our imagination about the gravity is like this much, that the gravitational constant G is a constant 

character. That is not quite right. Gravitational constant G is a relative character by all accounts. As we know that the 

measurement of time is affected both by motion (special relativity) as well as by gravity too (general relativity). Now the 

question may arise. Whether the measurement of gravity may also is affected by time? The answer is yes. Gravity too is affected 

by time (motion)as well. Gravity is the function of time. 
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INTRODUCTION 

The principle of symmetry plays an effective role in physics 

in the discoveries of new phenomenon and relationships. 

Dealings with symmetry considerations often lead physicists 

to new insights and discoveries. This is true for Newton’s laws 

of motion, for the laws of thermodynamics, for the laws of 

quantum mechanics, for the electromagnetic theory and for the 

theory of relativity as well. As an example, we know that the 

electromagnetic theory was developed purely on the basis of 

symmetrical considerations. Historically J.C. Maxwell 

developed his electromagnetic theory in order to encompass 

the earlier experimentally derived laws of Ampere and 

Faraday (Maxwell, 1881) . If a changing magnetic field creates 

electric field (Faraday law) then according to Maxwell’s 

speculations a changing electric field must create magnetic 

field and it turned out to be true. By similar analogy the 

symmetry principle is helpful in describing the relative aspect 

of gravity. Gravity affects time then on symmetrical grounds 

time too affects the gravity. Einstein’s theory of relativity have 

completely revolutionized our concepts of time, length and 

mass. The second postulate of relativity toppled our traditional 

concepts of relative speed, time and length completely, 

whereas the first postulate tells us about the relativity of mass 

and enables us to bring mass and energy into a single picture. 

The first question that arose to me when I studied relativity at 

very introductory level in 1990, concerning to the relativity of 

mass. The question was if the mass of an object increases at 

high speeds then what will happen to the gravity of earth in 

case if our earth suddenly starts running at high speed? 

Gravitational field of earth definitely must would increases 

proportionally with the increase in mass. Another a very 

puzzling question that occurred to me exactly in the same days 

was related to the relativity of time. An event that occurs in a 

frame moving with velocity ‘v’ relative to another frame 

would take longer time. The question that stroke my mind was, 

what would happen if I jumped down of a mountain of a 

speeding earth in contrast if the same experiment is done with 

an identical earth either at rest or moving slowly the speeding 

earth? Definitely it would take a longer time for me that I 

would reach near the surface of speeding earth. This indicates 

that the gravitational field of the speeding earth has decreased 

and the increase in the earth’s mass plays no role. In this article 

I want to declare that the theory of relativity as developed by 

Albert Einstein and that gives us exact results with 

experimental verifications is only an approximation and 

further can be extended by appending the principle of 

http://fundamentaljournals.org/ijfps/index.html
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equivalence with special relativity. Now Let’s start our 

business. Here we are given three postulates. 1-The laws of 

physics may be expressed in the same fashion in all accelerated 

frames (non-inertial frames) within an equivalent gravitational 

field. Thus an accelerated frame is officiating an equivalent 

gravitational field (The principle of equivalence). 2-The laws 

of physics are same for all inertial observers in relative motion 

w.r.t one another (The principle of relativity). 3-Speed of light 

is the limiting speed of the universe. The first postulate states 

that an accelerated frame behaves in the same manner as an 

equivalent gravitational field. Suppose that we have an 

idealized Einstein’s elevator (Fig1) moving relatively upward 

with high speed i.e. 𝑣 = 0.9𝑐 and an idealized object inside the 

elevator also is moving with the same speed in the same 

direction. Thus the object is at rest in the elevator with a 

constant force 𝐹ₒ in the same direction. Since the speed of light 

is the limiting speed of the universe and nobody can move with 

the same speed, acceleration thus produced in the elevator is 

very small. Though in relativity a constant force does not 

produce a constant acceleration and indeed acceleration is the 

function of the time elapsed, the instantaneous acceleration 

thus produced in the elevator is small under the influence of 

applied force and thus the idealized object inside the elevator 

instantly will appear to fall with small acceleration. Similarly 

if a man is standing on a weighing scale placed inside the 

elevator, then instantly the scale will register a less reading 

under the influence of the applied force. Now consider the 

same Einstein’s elevator (Fig.2) with the same relativistic 

speed, i.e. 𝑣 = 0.9𝑐 say, in the upward direction and is acted 

upon by the same constant force 𝐹0 say in the upward 

direction.  

 
         Fig 1                           Fig 2 

 

Let a light beam from a source 𝑠 enters the elevator. Since 

the elevator is very little accelerated under the influence of the 

constantly applied force 𝐹0, the light entering the elevator thus 

will bend very small. The overall path of the light is nearly a 

straight rather than a curved one. Now since one cannot 

distinguish between the behavior of an accelerated frame and 

an equivalent gravitational field and also the accelerated frame 

is officiating an equivalent gravitational field, now we take 

into account the case of gravitational field. Suppose that our 

earth is moving relatively say with 𝑣 = 0.9𝑐 (Fig.3) and an 

object shown above the earth surface too is moving in the same 

direction with the same speed. Now doubt, the object moving 

with 𝑣 = 0.9𝑐 is at rest with w.r.t the moving earth, but 

according to the Einstein’s postulate of general relativity (The 

principle of equivalence), the physics of this situation is same 

as that of the accelerated elevator, so the object shown above 

the earth surface is attracted by earth with small acceleration 

indicating that the gravitational field of earth is decreasing. 

Similarly a light passing this speeding earth (Fig.4) will bend 

very little by the earth’s gravitational field.  

 

 

 
     Fig 3                            Fig 4 

 

The overall path of light again is straight rather than a curved 

one as in the case of the accelerated elevator. The degree of the 

bending of light is the direct measure of the strength of the 

gravitational field. In order to check the prediction of the first 

postulate i.e. whether the prediction made by the first postulate 

may is true or absolutely wrong, we take into account the 

second postulate. This can be justified well by a simple 

example of school level physics for easy catch up to everyone. 

Let two observers Observer B and Observer A say, are agree 

to render their services in order to check the validity of the said 

prediction. Consider two planets one is our native earth and the 

second one is an imaginary planet, having the same rest mass 

as that of earth, the same volume (i.e. the same radius) as that 

of earth. Briefly a twin planet of our earth say. Now let 

Observer B is resting on earth and the earth is absolutely at rest 

in a gravity free region (Fig.5), whereas Observer A is resting 

on the imaginary earth (i.e. the twin planet) moving w.r.t the 

real earth in the +𝑣𝑒 x-direction with a speed 𝑣 = 0.866𝑐 say. 

Now let two objects are released at the same time from a height 

of 490 m above the surface of each planet. First we consider 

the case of real earth (Fig.6).  

The time for the object to reach the real earth surface is about 

10 sec. Now Let’s consider the case of imaginary earth running 

with 𝑣 = 0.866𝑐 and the imaginary object shown too is 

moving with the same speed in the same direction a height of 

490𝑚 above the imaginary earth (Fig.6). 

 

 

 

                Fig 6 Fig 5 
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According to the principle of relativity the observer A resting 

on the imaginary earth will find the same time for the object 

with 10 seconds to reach the surface of this imaginary planet. 

Calculations made by A also will stand with the same result. 

Both the observers are agree about the same time for fall of 

objects to their respective planets. In the other words each 

observer is agree about the same value of  g  for their respective 

planets. The prediction of the first postulate has failed and the 

gravitational field is not decreasing. But here is an important 

point. Both the observers are observing different events, not 

the same event i.e. each observer is observing a proper event 

of their respective coordinate system. That is why the 

prediction of the first postulate is dying. The only reason that 

account for this failure. Now let’s look at the same experiment 

with B point of view. The moving observer A claims that it 

takes exactly 10 seconds for the object to reach near the surface 

of his own planet (i.e. imaginary earth),while the rest observer 

B does not agree with observer A’s claim, why? At this stage 

the important phenomenon of time dilation will come to play 

and B finds as 𝑡𝐵 = 𝑡𝐴 √1 − 𝑣2/𝑐2⁄ = 20 𝑠𝑒𝑐. Observer B 

claims that it takes 20 seconds for the object to reach the 

surface of imaginary earth. Now in 10 seconds the imaginary 

object covers only one fourth (122.5m) a distance as viewed 

by B and in the same time the object of his own frame has 

already reached the real earth (Fig.7).  

 

 
Fig 7 

 

During this time (10 sec) the object above the real earth has 

reached its destination, whereas the object falling near the 

imaginary earth is in its (3/4) of its final resting place as viewed 

by observer B. Now what about the value of g for each 

observer? Observer B registers the time for the fall of 

imaginary object as, 𝑡𝐵 = 20 /sec by his own clock whereas A 

measure 𝑡𝐴 = 10 /sec by his clock and g with the point of view 

of each observer A and B is 9.8𝑚 𝑠2⁄  and 2.45𝑚 𝑠2⁄  respectively. 

Both observers A and B  does not agree about the value of g. 

On the other hand A calculates four times greater than that for 

B. The principle of relativity has been seriously crushed. In 

order to save the relativity principle of any horrible 

consequence, the gravitational constant 𝐺 need to be modified 

by (1-v2/c2) and g(A) = 4𝑔(𝐵) or g(𝐴) = 4𝐺(1 − 𝑣2/𝑐2)𝑀 𝑅2⁄  or  

g(𝐹) = 4𝐺(0.25)𝑀 𝑅2 = 𝐺𝑀 𝑅2⁄⁄ . In this case the laws of 

physics are same for both observers A and B in a relative 

motion. The object falls near the imaginary earth slowly i.e. 

with a small g as viewed by Observer B, confirms the 

prediction of the 1st postulate. The prediction made by the 1st 

postulate is completely consistent with the consequences of the 

2nd postulate. Now Let’s treat the same experiment with 

Observer A’s point of view (i.e. the imaginary earth observer). 

Each observer finds that the objects falls near their respective 

coordinate systems exactly in 10 seconds i.e. Observer B says 

that the object reaches to his own rest frame (i.e. the real earth) 

in 10 seconds. Similarly Observer A too claims that it takes 10 

seconds for the object to reach near the imaginary earth. Both 

the observers are right in their claim. But as Observer A diverts 

his attention from his own frame and focuses on the object 

falling near the real earth, he finds something wrong and 

disagrees with Observer B’s claim. How? If Einstein is not 

wrong in his statement, then according to Einstein, the watch 

on Observer A’s hand will run slowly w.r.t the Observer B’s 

watch. For Observer B the period of fall to his own planet (i.e. 

the real earth) is 10 seconds. But Observer A registers a 

different time for the same event by his own clock as follow. 

𝑡𝐴 = t𝐵√1 − 𝑣2/𝑐2 = 5 /sec 

For Observer A the period of this fall is 5 seconds. Now 

when Observer A sees the object falling to his own rest frame 

(i.e. the imaginary earth) he finds that it has covered only one 

fourth (122.5m) a distance in this time and (3/4)th  (i.e. 367.5m) 

of the way is remaining to its final destination(Fig.8). 

 
Fig 8 

 

 The value of g for the real earth from observer B and A is 

9.8 m/s2 and 39.2 m/s2  respectively. Both observers are agree 

that the object falling near the real earth reaches first its surface 

than that reaching the imaginary one. But they are disagree 

about the strength of fields. The observers claims the natural 

strength (i.e. the original strength) for their respective planets 

(i.e. g = 9.8m/s2) as in accordance to the relativity principle. 

Observer B claims that he is living in a natural field (i.e. 

original field, g = 9.8m/s2), while Observer A is suffering of a 

decreased field. On the other hand Observer A disagrees with 

Observer B’s statement and claims that he is enjoying the same 

natural field (i.e. g =9.8m/s2) whereas Observer B is facing an 

increased field. Both the observers are really in a dilemma. 

Now both the observers decides to empower the check to a 

third neutral observer O say, watching the situation carefully 

from a rest point P say in space (Fig.9). 

 
Fig 9 
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Now both the objects are released from a height of 490 m 

above their respective planets at the same time in front of 

Observer O. The real earth is at rest Observer O. The period of 

fall for Observer O is same as that for Observer B, i.e. t=10 

seconds. In other words Observer O too is treating this event 

properly. The imaginary earth is moving with 𝑣 = 0.866𝑐 

Observer O. The period of fall for the imaginary object will 

take a longer time for Observer O by an amount 

1/√1 − 𝑣2/𝑐2. This event is a dilated event for Observer O, 

i.e.  𝑡𝑜 = 𝑡𝐴 √1 − 𝑣2/𝑐2 =⁄ 20 𝑠𝑒𝑐. Observer O at the same 

time is playing a dual role. The fall of the object near the real 

earth is a proper event for Observer O, whereas the case of the 

imaginary earth is a dilated event for him. Apparently these 

two identical events are not same for Observer O. According 

to Einstein an event occurred at any place is not simultaneous 

to two observers in a relative motion w.r.t to each other. Now 

the alternate definition of the same statement as per in the 

language of relativity is “two identical events in a relative 

motion are no longer simultaneous as viewed by a single 

observer”. Similarly if we choose to view this fall from a 

moving system the trajectory as we will see is a hyperbola 

whereas classically the same trajectory is parabola. Now as 

Observer O calculates for the each event, he just finds that the 

value of g for the real earth is exactly 9.8 𝑚/𝑠2, whereas that 

for the imaginary earth is 2.45m/s2, indicating that the strength 

of the imaginary earth is going on decreasing. Both the 

postulates are inter-related. One predicts other verifies. The 

result of the 2nd postulate is completely consistent with the 

prediction made by the 1st postulate. In fact it is the ‘time’ that 

specifies the role of gravity. Although the mass of imaginary 

earth increases to twice its rest mass at this speed, but by very 

deep and careful examination one would come to the 

conclusion that this increase in mass does not matter. A 

question must arises here that with the increase in mass the 

gravitational field necessarily increases proportionally by the 

same rate. That is a wrong approach of one’s mind. In fact 

mass increases, the gravitational field decreases i.e. the value 

of 𝐺 decreases. Accordingly increasing in mass in this case is 

absolutely meaningless. If someone tries to argue that with the 

increase in mass the gravitational field necessarily increases 

proportionally. A ridiculous idea which is logically incorrect 

but Let’s accept for the time this ridiculous idea in order to 

check its validity. Consider another imaginary planet whose 

rest mass is half the rest mass of our native earth, but having 

the same volume i.e. the same radius as that of earth. Now in 

this case the value of ‘g’ for this imaginary planet is exactly 

the half as that for the real earth i.e. the value of ‘g’ for this 

imaginary earth is 9.8/2 = 4.9m /s2. Now suppose that this 

imaginary earth is running with 𝑣 = 0.866𝑐 the real earth in 

the +𝑣𝑒 x-direction. With this speed its mass increases to 

twice its rest mass and thus equals to the rest mass of the real 

earth. Now as according to our supposition that with the 

increase in mass, the gravitational field necessarily increases 

proportionally by the same rate. Thus the value of g for this 

imaginary earth at this speed is 9.8 𝑚/𝑠2 instead of 4.9 𝑚/𝑠2. 

Now let us once again consider the experiment of free fall 

bodies. Let again two objects are released freely from the 

height of 490 meters at the same time above the each planet. 

Also consider that the object falling near the imaginary planet 

too is moving with 𝑣 = 0.866𝑐 in the direction of the 

imaginary earth (Fig.10). 

 
Fig 10 

 

Both the bodies are at rest their respective planets. Now 

Let’s examine this case. If someone claims that the strength of 

the field ultimately increases proportionally with the increase 

in mass. Then now at this stage the value of g for this 

imaginary earth increases from 4.9m/s2 to 9.8m/s2 accordingly. 

Thus the observer resting on this imaginary earth i.e. Observer 

A registers that it takes exactly 10 seconds for the object to 

reach the imaginary planet. On the other hand the stationary 

observer i.e. Observer B measures the period of this fall for the 

same event to be 20 seconds. Now again the value of g in this 

case for the imaginary earth as measured by observer B is g𝐵 =
2.45 𝑚/𝑠2, indicating that although the mass of imaginary 

earth is going on increasing, the gravitational field is going on 

decreasing. Now consider the same case in terms of two 

interacting bodies to see that how the gravitational force is 

affected at high speeds. Let two metallic balls of masses 𝑚1 

and  𝑚2 each, are placed in a gravity free space and are 

separated by a small distance 𝑟 say (𝑟 is an Arabic  alphabet 

called Hamza ) of each other (Fig.11). Let both the balls are 

kept aloof of each other from gravitational pull by some 

external means say (i.e. by external forces say) as shown 

(Fig.11). Later on as the external forces are laid down, the 

gravitational attraction now will start to operate of each side. 

Let’s find their relative velocity of approach attributable to 

gravitational pull as shown (Fig.12). 

 

  
Fig 11 Fig 12 

 

 

 
Fig 13 

 

The gravitational force between the two bodies is 

Gm1m2/(r)2 and the total available 𝐾. 𝐸 is equal to the total 

available 𝑃. 𝐸 i.e, Gm1m2 / r. 
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𝐾. 𝐸𝑇𝑜𝑡𝑎𝑙  = 𝑃. 𝐸𝑇𝑜𝑡𝑎𝑙  

𝑚1𝑣1
2 + 𝑚2𝑣2

2 = 2𝐺𝑚1𝑚2 r⁄      (1) 

Along with this the momentum must be conserved of each 

side. 

𝑖. 𝑒   𝑚1𝑣1  = 𝑚2𝑣2   (2) 

 

Now from Equ (1) we have. 

 

𝑚1𝑣1
2 + 𝑚2𝑣2

2 = 2𝐺𝑚1𝑚2 r⁄  
 

𝑣1(𝑣1 + 𝑣2) = 2𝐺𝑚2 r⁄    (3) 

By similar mathematical treatment we have. 

𝑣2(𝑣1 + 𝑣2) = 2𝐺𝑚1 r⁄   (4) 

Adding equations (3) & (4) we have. 

𝑣1(𝑣1 + 𝑣2) + 𝑣2(𝑣1 + 𝑣2) = 2𝐺(𝑚1 + 𝑚2) r⁄  

𝑣1
2 + 𝑣1. 𝑣2 + 𝑣1. 𝑣2 + 𝑣2

2 = 2𝐺(𝑚1 + 𝑚2) r⁄  

𝑣1
2 + 2𝑣1. 𝑣2 + 𝑣2

2 = 2𝐺(𝑚1 + 𝑚2) r⁄  

(𝑣1 + 𝑣2)
2 = 2𝐺(𝑚1 + 𝑚2) r⁄  

 

We have   (𝑣1 + 𝑣2) = √2𝐺(𝑚1 + 𝑚2) r⁄   but (v1+v2) = vrel  

the relative velocity of approach 𝑣𝑟𝑒𝑙 = √2𝐺(𝑚1 + 𝑚2) r⁄ . 

This is the relative velocity of approach. In case when m1 = m2 

= m say then 𝑣𝑟𝑒𝑙 = 2√𝐺𝑚/ 𝑟. The instantaneous change in 

this velocity is the gravitational acceleration i.e. agrav . Now  
𝑑

𝑑𝑡
(𝑣𝑟𝑒𝑙) = 𝑎𝑔𝑟𝑎𝑣  

Upon integration yields  

∫ 𝑑𝑣𝑟𝑒𝑙

𝑣𝑟𝑒𝑙

0

= ∫𝑎𝑔𝑟𝑎𝑣 . 𝑑𝑡

𝑡

0

 

𝑣𝑟𝑒𝑙 = 𝑎𝑔𝑟𝑎𝑣 . 𝑡 

We have  

𝑎𝑔𝑟𝑎𝑣 = 𝑣𝑟𝑒𝑙 𝑡 = 2√𝐺𝑚/ 𝑟  𝑡⁄⁄   (5) 

Now suppose that this entire mass is enclosed in evacuated 

box of negligible mass say and the entire system is moving 

relativistically with high speed in the upward direction 

(Fig.13). Now for an observer observing this whole situation 

from any rest frame in space will note that this particular time 

of approach slows down to him by an amount, 1 √1 − 𝑣2/𝑐2⁄   

i.e.  𝑡 = 𝑡′ √1 − 𝑣2/𝑐2⁄  .  Now Eq (5) takes the form as under. 

𝑎𝑔𝑟𝑎𝑣
′ = 2√𝐺𝑚/ 𝑟  (𝑡′ √1 − 𝑣2/𝑐2⁄ )⁄  

 

𝑎𝑔𝑟𝑎𝑣
′ = 2√1 − 𝑣2/𝑐2. √𝐺𝑚/ 𝑟  𝑡′⁄  

 

𝑎𝑔𝑟𝑎𝑣
′ = 2√𝐺(1 − 𝑣2/𝑐2)𝑚/ 𝑟 𝑡′ ⁄  (6) 

 

Comparing Equ (5) and (6) clearly 𝑎𝑔𝑟𝑎𝑣
′  is less than 𝑎𝑔𝑟𝑎𝑣 . 

Also look at this last equation (6), once again ‘G’ is losing its 

weight by an amount (1 − 𝑣2/𝑐2), indicating that gravitational 

activities die near the speed of light. Also note that the 

direction of the box is not in the direction of the line joining 

these two bodies gravitationally. Hence there is no worry of 

the Lorentz contracted distance for any observer. As we saw 

in the case of interacting bodies, how the strength of the 

gravitational field decreases by an amount (1 − 𝑣2/𝑐2). Let’s 

now try for another effort for further confirmation of the same 

result. Let two observers O(1) and O(2) say (both are sisters) 

renders their services in order to check this phenomenon. O(2) 

is resting on an earth along with a pendulum oscillating with a 

period of 2 seconds say and the earth is supposed to be 

absolutely at rest in a gravity free region (Fig.14), while the 

other observer i.e. O(1) is watching the same situation from 

any rest frame outside the earth in a space. 

  

 
Fig 14 

 

Both the observers are agreed about the same period i.e. 

about the same value of g. Now all of a sudden the earth starts 

running with a speed 𝑣 =  0.866𝑐, then what will happen? 

Again time dilation will play its role. The period of oscillation 

is same for O(2) i.e. 2 seconds, but O(1) disagrees with O(2) 

and finds out the following period for oscillation as. 

𝑡(𝑁) = 𝑡(𝐻) √1 − 𝑣2/𝑐2⁄ = 4 𝑠𝑒𝑐 

The rest observer i.e. O(1) claims that the period is, tN = 4 

seconds, while for the moving observer i.e. for O(2) the period 

of the same event is, tH = 2 seconds. Now what about the value 

of g for the each observer, Let’s see. 

 
O(1) Point Of View O(2) Point Of View 

𝑣 = 0, 𝑡(𝑁) = 4 seconds 𝑣 = 0.866c , 𝑡(𝐻) = 2 seconds 

𝑡(𝑁) = 2𝜋√𝑙 𝑔(𝑁) ⁄  𝑡(𝐻) = 2𝜋√𝑙 𝑔(𝐻) ⁄  

𝑔(𝑁) = 4𝜋2𝑙 (𝑡𝑁)2⁄  𝑔(𝐻) = 4𝜋2𝑙 (𝑡𝐻)2⁄ = 4𝜋2𝑙 (2 𝑠𝑒𝑐)2⁄  

𝑔(𝑁) = 4𝜋2𝑙 (4 𝑠𝑒𝑐)2⁄  𝑔(𝐻) = 𝜋2𝑙 

𝑔(𝑁) =
1

4
𝜋2𝑙 =>     𝑔(𝐻) = 4𝑔(𝑁)  

 

Again both the observers does, t agree about the value of g. 

Strong disagreement exists between the observers about the 

value of ‘g’. O(1) measures this value to be gN, while that for 

O(2) the value is gH = 4gN, i.e. four times greater than that for 

O(1). A very unhappy situation. The principle of relativity has 

been badly demolished. Now a third observer Amna say is 

looking for this situation carefully. She quickly understands 

the problem. The whole of situation is clear to her. She too 

wants to render her services. She comes to O(2) and advised 

her that if she does not want to violate the principle of relativity 

then she will have to do a little modification i.e. she will have 

to lessen the value of the gravitational constant 𝐺 by an amount 

(1 − 𝑣2/𝑐2) and thus she will find herself to be escaped of this 

troublesome situation. As she does so, she has the same value 

of ‘g’ as that for O(1).  
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Let’s see how O(2) handles this situation by decreasing the 

value of gravitational constant G by an amount (1 − 𝑣2/𝑐2). 

 

For O(1) For O(2) 

𝑔(𝑁) = 𝐺𝑀 𝑅2⁄  𝑔(𝐻) = 4𝑔(𝑁) = 4𝐺𝑀 𝑅2⁄  

 Now decreasing ‘G’ by an amount (1 − 𝑣2/𝑐2) 
 𝑔(𝐻) = 4𝐺(1 − 𝑣2/𝑐2)𝑀 𝑅2⁄  

 𝑔(𝐻) = 4𝐺[1 − (0.866)2]𝑀 𝑅2⁄  

 𝑔(𝐻) = 4𝐺(0.25)𝑀 𝑅2 = 𝐺𝑀 𝑅2⁄⁄  

 =>    𝑔(𝐻) = 𝑔(𝑁) 

The value of g now is the same for both observers, i.e. the 

laws of physics are same for both. The day is an Eid-day for 

each one. The physics of relativity has been survived of death.  

 

EXPLANATION  

Now consider another pendulum with the same length i.e. 

with the same period (t =2sec). If this pendulum is taken up to 

a height of 𝑅 from the earth surface i.e. a distance of 2𝑅 from 

the earth center (Fig.15).  

 
Fig 15 

Now the period of the same pendulum definitely increases. 

Let’s see that by how much amount the period of this 

pendulum increases. The value of g at the earth surface is, g = 

𝐺𝑀 𝑅2⁄  and the period of this pendulum on the earth surface 

is, t =2sec. At a height of 𝑅 from the earth surface, the total 

distance from the earth center is 2𝑅. Now Let’s see what 

happens to the value of g a height of 2𝑅 above the earth center. 

 

𝑔′ = 𝐺𝑀 (2𝑅)2 =
1

4
[𝐺𝑀 𝑅2] ⁄ =  

1

4
𝑔 ⁄  

 

At a height twice the radius of earth from the earth center the 

acceleration of gravity decreases to (1/4)th the value of g at the 

earth surface. The value of g at the surface of earth is four times 

greater than that at a height 𝑅 above the earth surface. Now 

Let’s examine the period of each pendulum i.e. one at the earth 

surface, a distance of 𝑅 from the earth center and the 2nd one 

at a height 𝑅 above the earth surface, i.e. at a distance of 2𝑅 

from its center. 

 

1st Pendulum (Earth surface) 2nd Pendulum ( ℎ = 2𝑅) 

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 𝑙 𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑒𝑛𝑑𝑢𝑙𝑢𝑚 = 𝑙 

𝐴𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑔  g′ =
1

4
𝑔 

𝑡 = 2𝜋√𝑙 𝑔⁄ = 2 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑡′ =? 

 𝑁𝑜𝑤,    𝑡′ = 2𝜋√𝑙  g′⁄ = 2𝜋√𝑙 (
1

4
𝑔)⁄  

 𝑡′ = 2𝜋√4 𝑙 𝑔⁄ = 2(2𝜋√𝑙 𝑔⁄  ) 
 𝑡′ = 2(2 𝑠𝑒𝑐) = 4 𝑠𝑒𝑐 

The pendulum at the earth surface has a period of 2 seconds, 

whereas that for a height 𝑅 above the earth surface is 4 

seconds, despite the fact that both the pendulums are identical 

i.e. each has the same length. In other words while the 2nd 

pendulum a height 𝑅 above the earth surface completes one 

oscillation, the earth based pendulum has completed two 

oscillations in the same time. Now Let’s once again consider 

the case of two planets in a relative motion. One is our native 

earth call it the real earth, the 2nd is an imaginary one. Both the 

planets are identical in all respect i.e. each the planet has the 

same rest mass and the same volume. The real earth is 

completely at rest in a gravity free region, while the imaginary 

one is running with 𝑣 = 0.866𝑐 in the +𝑣𝑒 x-direction to the 

real one (Fig.16). 

 

 
Fig 16 

Now again the two observers O(1) and Herman play their 

role. O(1) is standing on the real earth which is at rest in a 

space, while O(2) is resting on the imaginary earth moving 

with 𝑣 = 0.866𝑐. Each the observer is equipped with an 

identical pendulum of period, 𝑡 =  2 sec each. Each observer 

measures the same period of oscillation in their respective 

coordinate system as the principle of relativity requires. For 

O(1) the period of her own pendulum is tN = 2seconds. For 

Herman the period of her own pendulum too is tH = 2seconds. 

Now Let’s analyse this whole situation with O(1),s point of 

view. For O(1) the period of her own pendulum is tN = 

2seconds. As she turns her attention from her own frame and 

focuses on the imaginary one, she just finds out that Herman’s 

pendulum is not oscillating with a period of 2seconds, but it 

takes a longer time to oscillate, i.e. 

𝑡(𝑁) = 𝑡(𝐻) √1 − 𝑣2/𝑐2 =⁄ 4 𝑠𝑒𝑐 

The stationary observer i.e. O(1) finds that it takes 4 seconds 

to complete one oscillation and corresponding to this her own 

pendulum resting on the real earth has completed two 

oscillations in this time. Clearly O(1) concludes that the 
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gravitational field of the imaginary earth has been decreased. 

As she calculates, she exactly finds out that the gravitational 

field of the imaginary earth has been decreased to (1/4)th of its 

rest field. Look carefully that this situation is completely 

analogous to the first one. In the first case the earth-based 

pendulum is completing two oscillations, while the 2nd 

pendulum at a distance of 2𝑅 from the earth center has 

completed only one oscillation in the same time. Now in the 

2nd case the imaginary earth-based pendulum completes only 

one oscillation, while the real earth-based pendulum has 

completed two oscillations in the same time. This very close 

resemblance of these two situations clearly indicates that the 

gravitational field of the imaginary earth is going on 

decreasing. In the first case the field decreases due to increase 

in altitude, in the 2nd case the field decreases because of 

motion. Let’s now examine for another aspect. In the year 

1905 a young physicist of 26, Albert Einstein in his most 

popular writing (Bernstein, Fishbane, & Gasiorowicz, 2000) in 

which he proposed the theory of relativity, Einstein proposed 

a test. Einstein imagined two identical clocks and putting one 

of them at the north pole and the other at the equator (Fig.17).  

 

 
Fig 17 

 

Now at any instant the motion of a point at the equator is just 

simply a motion in a straight line with a constant speed while 

the pole is at rest w.r.t the equator. The time dilation effect now 

will play its role. As a result the clock at the equator will run 

slowly w.r.t the polar clock. If the polar observer reads time tp 

with his clock, then he will register that the equatorial clock 

reads te. Now according to the polar observer 

 

𝑡𝑝  = 𝑡𝑒 √1 − (𝑣𝑒𝑞)
2 𝑐2⁄⁄ = 𝑡𝑒[1 − (𝑣𝑒𝑞)

2 𝑐2⁄ ]
−1

2⁄  

𝑖. 𝑒, 𝑡𝑝 = 𝑡𝑒[1 + (𝑣𝑒𝑞)
2 2𝑐2⁄ ]  

 

here veq is the velocity of a point at the equator. The fractional 

time shift between the polar clock and the equatorial clock is. 

 

(𝑡𝑝 − 𝑡𝑒) 𝑡𝑒⁄ = (𝑣𝑒𝑞)
2 2𝑐2⁄  

 

This is the fractional time shift between both the clocks. 

Obviously the equatorial clock runs slowly w.r.t the polar 

clock by an amount  (𝑣𝑒𝑞)
2 2𝑐2 .⁄   A decade later by bringing 

general relativity into practice Einstein noted that not only the 

motion but gravity too affects the measurement of time. For 

this purpose Einstein imagined an emitter say 𝐸 that emits 

radiation of frequency 𝑓 say a height ‘h’ above the earth 

surface and the detector 𝐷 is lying on the surface of earth 

(Fig.18).  

 

 
Fig 18 

 

Both are in a vertical fashion. The emitter is at a height ‘h’ 

above the earth surface i.e. at a higher potential w.r.t the 

detector. So the gravitational potential difference between the 

emitter and the detector is ∆𝜑 = 𝑔ℎ. Now suppose that this 

entire system is enclosed in the Einstein’s elevator and the 

elevator is accelerated with acceleration g in the upward 

direction continuously(Fig.18). Now according to the principle 

of equivalence both the situations are same. Now as the 

elevator is accelerated upward with acceleration g , then during 

this acceleration a pulse of radiation is emitted at 𝑡 = 0. Now 

in the time 𝑡 = ℎ/𝑐 the radiation will reach the detector. 

During this time the detector will have acquired a speed 𝑣 =
 𝑔𝑡 = 𝑔ℎ/𝑐. This is the case of Doppler effect, in which the 

observer moves towards the emitter or source. Thus the 

detector sees that the frequency 𝑓 of radiation has increased as 

below. 

𝑓′ = 𝑓(1 + 𝑣 𝑐⁄ ) 

 

 𝑓′/𝑓 = 1 + 𝑣 𝑐 = 1 + (1 𝑐)[𝑔ℎ 𝑐] = 1 + 𝑔ℎ 𝑐2⁄⁄⁄⁄  

 

𝑓′/𝑓 = 1 + ∆𝜑 𝑐2⁄  
 

Now according to the principle of equivalence the frequency 

of light coming towards earth also will increase. Similarly the 

frequency of light rising away from earth will decrease. Now 

the fractional change in the frequency is, 

 

(𝑓′ − 𝑓) 𝑓⁄ =  ∆𝑓 𝑓⁄ = ∆𝜑 𝑐2⁄  
  

Now Let’s consider the solar system. We receive light from 

sun and the sun is too much massive than earth. Potential at the 

sun surface is 𝐺𝑀𝑆/𝑅𝑠 (MS is the mass of and 𝑅𝑠 is the radius 

of the sun) and w.r.t sun we are at zero potential, so the change 

in potential approximately is all due to sun. Now the frequency 

of light reaching us is going on decreasing by an amount. 

 

 ∆𝑓 𝑓⁄ =  ∆𝜑 𝑐2⁄ = (1 𝑐2⁄ )[−𝐺𝑀𝑠 𝑅𝑠⁄ ]    
 ∆𝜑 𝑐2⁄ = −𝐺𝑀𝑠 𝑅𝑠. 𝑐2⁄  

 

If we look into the sign, the potential difference between the 

sun and earth is – 𝑣𝑒, so the frequency of light reaching us 

decreases. Now we look at the other aspect. We know that the 

frequency of a periodic system is related to the period 𝑇 by 

𝑇 = 1/𝑓  i.e.  𝑓 = 1/𝑇. Now differentiating 𝑓 =  1/𝑇 time 

we have. 
𝑑𝑓

𝑑𝑡
=

𝑑

𝑑𝑡
(
1

𝑇
) =

−1

𝑇2
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(∆𝑓 ∆𝑇⁄ )∆т→0 = −1 𝑇2⁄  
 

so we have ∆𝑓 = −∆𝑇 𝑇2⁄ . Thus  

 ∆𝑓 𝑓⁄ = −∆𝑇 𝑇 = ∆𝜑 𝑐2⁄⁄   
This is the fractional shift in the system period. Now the 

fractional shift in the total elapsed time is. 

∆𝑡 𝑡⁄ = −∆𝜑 𝑐2⁄ = 𝐺𝑀𝑠 𝑅𝑠. 𝑐2⁄  

Look again at the sign. The sign is +𝑣𝑒, the time increases. 

The clock at the earth surface will run quickly than that at the 

sun surface. An observer At any potential will see a clock 

higher in potential running more quickly and will see an 

identical clock in the lower potential running slowly. If we 

have two identical clocks keeping one at the earth surface (sea 

level) and the other at the top of the mountain K-2 at a higher 

potential. Then the clock at the K-2,s peak will run slightly a 

little faster than the earth-based clock. In this way Einstein 

came to the conclusion that not only motion but gravity too is 

responsible to affect the time. Now the combined effect due to 

the motion of equatorial clock w.r.t polar clock along with any 

difference ∆𝜑 in the gravitational potential between the pole 

and the equator results in a net shift. 

 

∆𝑡 𝑡⁄ = (𝑣𝑒𝑞)
2 2𝑐2 − (−∆𝜑 𝑐2⁄ )⁄  

 

∆𝑡 𝑡⁄ = (𝑣𝑒𝑞)
2 2𝑐2 + ∆𝜑 𝑐2⁄⁄   

Now although the polar and equatorial clocks both are acted 

upon by the same gravitational force towards the center of 

earth, but the equatorial clock is subject to an additional force 

i.e. the centripetal force. The equatorial clock is accelerated 

towards the earth center by centripetal acceleration due the 

axial rotation as, 𝑎𝑐𝑒𝑛𝑡𝑟𝑖𝑝 = (𝑣𝑒𝑞)
2 𝑅⁄ = 𝜔2𝑅  (here 𝜔 is 

termed as omega).  

We know that a force can be expressed in terms of potential 

energy as a negative of the space derivative of potential 

energy. The associated acceleration (i.e force per unit mass) 

may be expressed as a negative of the space derivative of the 

potential (i.e. P.E per unit mass). i.e. centripetal acceleration =   

‒ d/dr (centripetal potential). 

𝑎𝑐𝑒𝑛𝑡𝑟𝑖𝑝 = − 
𝑑

𝑑𝑟
[𝜑𝑐𝑒𝑛𝑡𝑟𝑖𝑝] 

−∫𝑑𝜑𝑐𝑒𝑛𝑡𝑟𝑖𝑝 = ∫𝑎𝑐𝑒𝑛𝑡𝑟𝑖𝑝 . 𝑑𝑟 

−𝜑𝑐𝑒𝑛𝑡𝑟𝑖𝑝 = ∫[(𝑣𝑒𝑞)
2 𝑟]𝑑𝑟 = ∫[𝜔2𝑟2 𝑟⁄ ] 𝑑𝑟 = 𝜔2 ∫𝑟𝑑𝑟 ⁄  

= 𝜔2𝑟2 2 = (𝑣𝑒𝑞)
2 2⁄⁄  

𝜑𝑐𝑒𝑛𝑡𝑟𝑖𝑝 = −(𝑣𝑒𝑞)
2 2⁄  

 

For the equatorial clock, this potential must be included 

along with gravitational potential to get a net potential. i.e. Net 

potential (eq) = gravitational potential + centripetal potential 

 

𝜑(𝑛𝑒𝑡)𝑒𝑞 = 𝜑(𝑔𝑟𝑎𝑣)𝑒𝑞 + 𝜑𝑐𝑒𝑛𝑡𝑟𝑖𝑝 

i.e.  𝜑(𝑛𝑒𝑡)𝑒𝑞 = 𝜑(𝑔𝑟𝑎𝑣)𝑒𝑞 − (𝑣𝑒𝑞)
2 2⁄  

 

For the polar clock there is no additional acceleration, so 

ɸcentrip(pol) = 0 for the polar clock. The only potential is the 

gravitational potential. Thus the net potential for the polar 

clock is. Net potential(pole) = gravitational potential(pole) 

 

𝜑(𝑛𝑒𝑡)𝑝𝑜𝑙 = 𝜑(𝑔𝑟𝑎𝑣)𝑝𝑜𝑙 

Now according to Einstein the net potential at the equator 

must be equal to the net potential at the pole. 

 

𝜑(𝑛𝑒𝑡)𝑒𝑞 = 𝜑(𝑛𝑒𝑡)𝑝𝑜𝑙 

𝜑(𝑔𝑟𝑎𝑣)𝑒𝑞 − (𝑣𝑒𝑞)
2 2⁄ = 𝜑(𝑔𝑟𝑎𝑣)𝑝𝑜𝑙 

𝜑(𝑔𝑟𝑎𝑣)𝑒𝑞 = 𝜑(𝑔𝑟𝑎𝑣)𝑝𝑜𝑙 + (𝑣𝑒𝑞)
2 2⁄  (7) 

 

i.e. the gravitational potential at the equator is higher than 

that at the pole by an amount v2
(eq)   2.      This difference in 

potential between the pole and the equator ultimately will 

affect the time. Now Let’s find the net fractional time shift due 

to equatorial motion together with a shift due to the 

gravitational potential. 

∆𝑡 𝑡⁄ = (𝑣𝑒𝑞)
2 2𝑐2 ⁄ + ∆𝜑 𝑐2⁄  

(𝑡𝑝 − 𝑡𝑒) 𝑡𝑒⁄ = (𝑣𝑒𝑞)
2 2𝑐2 ⁄ + (𝜑𝑝𝑜𝑙 − 𝜑𝑒𝑞) 𝑐2 ⁄  

(𝑡𝑝 − 𝑡𝑒) 𝑡𝑒⁄ = (𝑣𝑒𝑞)
2 2𝑐2 ⁄ +

[𝜑𝑝𝑜𝑙 − {𝜑𝑝𝑜𝑙 + (𝑣𝑒𝑞)
2 2⁄ }] 𝑐2⁄   

From Eq (7) 

∆𝑡 𝑡⁄ = (𝑣𝑒𝑞)
2 2𝑐2 ⁄ + [𝜑𝑝𝑜𝑙 − 𝜑𝑝𝑜𝑙 − (𝑣𝑒𝑞)

2
2⁄ ] 𝑐2⁄

= (𝑣𝑒𝑞)
2 2𝑐2 ⁄ − (𝑣𝑒𝑞)

2 2𝑐2 ⁄ = 0 

 

There is no fractional shift at all between the two clocks. 

Both the clocks run at the same rate and completely 

synchronized. The effect on time produced by a potential 

difference between the pole and the equator effectively cancels 

that produced by the equatorial motion. Later on Einstein 

himself admitted too that he was wrong in 1905. Now Let’s 

once again return to the case of real and the imaginary earth. 

The imaginary earth has the same rest mass as the real earth, 

the same volume i.e. the same radius and the same period of 

axial rotation, i.e. all the characteristics of the imaginary earth 

is same as that of real earth (Fig.19). 

 
Fig 19 

 

Now Let’s suppose that the real earth is completely at rest in 

a gravity free region. The only kind of motion is its axial 

rotation and let the imaginary earth is moving with 𝑣 =
0.866𝑐 in a +ve x-direction w.r.t the real earth in a gravity free 

region with the same axial rotation (Fig.19). Let’s again 

consider two observers Observer B and Observer A say. 

Observer B is resting on the real earth and Observer A is 

resting on the imaginary one. Each the observer is agree about 

the same period of axial rotation for their respective coordinate 

systems. According to Observer B the real earth completes one 

rotation in tJ =24 hours, while Observer A also measures that 

the imaginary earth (𝑣 = 0.866𝑐) too takes 24 hours to 

complete one axial rotation, i.e. tF=24 hours. Each the 

observer claims too that the polar and equatorial clocks run at 

the same rate for their respective planets, as required by the 

relativity rule. Now Let’s see the rotation of the imaginary 
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earth from Observer B’s point of view(i.e. the real earth 

observer). According to Observer A (i.e, the imaginary earth 

observer) his own planet i.e. the imaginary earth completes one 

axial rotation in tF=24 hours. On the other hand Observer B 

(i.e. the real earth observer) when turns his attention and 

focused on the imaginary earth moving with 𝑣 = 0.866𝑐 him, 

he finds something like this. 

𝑡(𝐵) = 𝑡(𝐴) √ 1 − 𝑣2/𝑐2⁄ = 48 hour 

Obviously Observer B observes that it takes 48 hours (by his 

clock) for the imaginary earth to complete one rotation. 

According to Observer B the real earth has completed two 

rotations about its axis in this time, i.e. for observer B the real 

earth completes one rotation in 24 hours, while the imaginary 

earth takes 48 hours to complete one rotation. Now according 

to Observer B the angular velocity 𝜔 of the imaginary earth 

has decreased to one half of the real earth i.e. if the real earth 

completes π radians then the imaginary earth completes only 

𝜋/2 radians in the same time. Consequently the linear velocity 

𝑉 of a particle at the equator of the imaginary earth also 

decreases to one half as that of the real one, according to the 

relation, 𝑣 = 𝑟 𝜔. For the real earth the angular velocity = 𝜔 

The linear velocity of a particle at the equator of real earth, 

𝑣 = 𝑅𝜔. The angular velocity of the imaginary earth, 𝜔′ =
𝜔 2⁄ . The linear velocity of a particle at the equator of 

imaginary earth,  𝑣′ = 𝑅𝜔′ = 𝑅𝜔 2 = 𝑣 2⁄⁄   𝑣𝑖𝑚𝑔 = 𝑣𝑟𝑒𝑎𝑙 2⁄  

Now the centripetal acceleration 𝑎𝑐𝑒𝑛𝑡   of the imaginary earth 

as viewed by Observer B is 

𝑎𝑐𝑒𝑛𝑡(𝑖𝑚𝑔) = (𝑣𝑖𝑚𝑔)2 𝑅 = (𝑣𝑟𝑒𝑎𝑙 2⁄ )2 𝑅 =
1

4
⁄⁄  [(𝑣𝑟𝑒𝑎𝑙)

2 𝑅⁄ ] 

𝑎𝑐𝑒𝑛𝑡(𝑖𝑚𝑔) =
1

4
[𝑎𝑐𝑒𝑛𝑡(𝑟𝑒𝑎𝑙)] 

The centripetal acceleration of a point at the equator of the 

imaginary earth decreases to one fourth time that of the real 

earth as measured by Observer B. Now the associated 

centripetal potential 𝜑𝑐𝑒𝑛𝑡  of the imaginary earth of which this 

acceleration has been derived definitely will fall by the same 

rate. As a result the clock at the equator of this imaginary earth 

will run slowly in this lower potential. On the other hand the 

linear velocity 𝑣′ of a point at the equator of this imaginary 

earth decreases to one half that of the real earth. The time 

dilation effect produced by the equatorial motion will 

diminish. As a result the equatorial clock of the imaginary 

earth will start to run quickly due to this decrease in motion. 

The decrease in potential slows down the equatorial clock, 

while the decrease in motion results in speeding up the same 

clock. Both the factors (i.e. decrease in potential +decrease in 

motion) necessarily cancels the effect of each other and no net 

effect will be seen in the equatorial clock of the imaginary 

earth. Both the polar and equatorial clocks of the imaginary 

earth run at the same rate as viewed Observer B(i.e. the real 

earth observer). Now after having this discussion Let’s return 

back to the case of centripetal acceleration. As we saw 

previously that the centripetal acceleration of the imaginary 

earth (v=0.866c) falls to one fourth (1/4th) that of the real earth, 

𝑎𝑐𝑒𝑛𝑡(𝑖𝑚𝑔) =
1

4
[𝑎𝑐𝑒𝑛𝑡(𝑟𝑒𝑎𝑙)] , the centripetal force associated 

with this acceleration must decreases by the same rate, i.e.  

𝐹𝑐𝑒𝑛𝑡(𝑖𝑚𝑔) =
1

4
[𝐹𝑐𝑒𝑛𝑡(𝑟𝑒𝑎𝑙)]. The centripetal force of the 

imaginary earth also decreases to one fourth (1/4)th that of the 

real earth. As we saw that the centripetal force of the imaginary 

earth is going on decreasing, now our prime objective is to see 

whether the gravitational force of the imaginary earth may 

decreases? In order to see that how the gravitational force 

decreases, we will have to see the behavior of force at high 

speed. Suppose that a force 𝐹ₒ of constant magnitude acts on 

the Einstein’s elevator moving upward with high speed and 

whose rest mass is 𝑚ₒ say(Fig.20).  

 

 
Fig 20 

 

 

As the speed of an object cannot exceed the speed of light 𝐶, 

it is very hard to accelerate the elevator and so the Newton’s 

2nd law is no more applicable in this case and therefore must 

be modified properly. We know that  𝐹ₒ =
𝑑𝑃

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑚ₒ𝑣) . But 

at high speeds the relativistic formulation of momentum is   

𝑃 = 𝑚ₒ𝑣 √ 1 − 𝑣2/𝑐2⁄  . Now the 2nd law takes the form  𝐹ₒ =
𝑑

𝑑𝑡
(𝑃) =

𝑑

𝑑𝑡
(𝑚ₒ𝑣 √ 1 − 𝑣2/𝑐2⁄ ). This is the relativistic 

formulation of Newton’s 2nd law. Now  

𝐹ₒ =
𝑑

𝑑𝑡
(𝑃) =

𝑑

𝑑𝑡
(𝑚ₒ𝑣 √ 1 − 𝑣2/𝑐2⁄ ) 

𝐹ₒ = (𝑚ₒ √ 1 − 𝑣2/𝑐2⁄ ) .
𝑑𝑣

𝑑𝑡
+ 𝑣.

𝑑

𝑑𝑡
(𝑚ₒ √ 1 − 𝑣2/𝑐2⁄ ) 

𝐹ₒ = 𝑚ₒ𝑣• √ 1 − 𝑣2/𝑐2⁄ + 𝑣.𝑚ₒ
𝑑

𝑑𝑡
( 1 − 𝑣2/𝑐2)

−1
2⁄  

𝐹ₒ = 𝑚ₒ𝑣• √ 1 − 𝑣2/𝑐2⁄

+ 𝑚ₒ. 𝑣[
−1

2
( 1 − 𝑣2/𝑐2)

−3
2⁄ .

𝑑

𝑑𝑡
( 1 − 𝑣2

/𝑐2)] 

𝐹ₒ = 𝑚ₒ𝑣• √ 1 − 𝑣2/𝑐2⁄

+ 𝑚ₒ. 𝑣[
−1

2
( 1 − 𝑣2

/𝑐2)
−3

2⁄ . (
−1

𝑐2
. 2v.

𝑑𝑣

𝑑𝑡
)] 

𝐹ₒ = 𝑚ₒ𝑣• √ 1 − 𝑣2/𝑐2⁄

+ 𝑚ₒ. 𝑣[(𝑣. 𝑣• 𝑐2⁄ )( 1 − 𝑣2/𝑐2)
−3

2⁄ ] 

𝐹ₒ =
𝑚ₒ𝑣•

√ 1 − 𝑣2/𝑐2
+

𝑚ₒ𝑣•( 𝑣2/𝑐2)

( 1 − 𝑣2/𝑐2)
3

2⁄

=
𝑚ₒ𝑣•

√ 1 − 𝑣2/𝑐2
(1 +

 𝑣2/𝑐2

√ 1 − 𝑣2/𝑐2
) 

𝐹ₒ =
𝑚ₒ𝑣•

√ 1 − 𝑣2/𝑐2
[
1 −  𝑣2/𝑐2 +  𝑣2/𝑐2

 1 − 𝑣2/𝑐2
] 

𝐹ₒ =
𝑚ₒ𝑣•

√ 1 − 𝑣2/𝑐2
[

1

 1 − 𝑣2/𝑐2
] 

But we know that 𝑚ₒ √ 1 − 𝑣2/𝑐2⁄ = 𝑚 and 𝑣• =
𝑑𝑣 𝑑𝑡 = 𝑎⁄ . So we have 𝐹ₒ = 𝑚𝑎 ( 1 − 𝑣2/𝑐2)⁄ . Hence 

𝑚𝑎 = 𝐹ₒ( 1 − 𝑣2/𝑐2) . So if a constant force acts on the 

Einstein’s elevator say, moving upward with high speed, then 

what we would expect? Though in relativity a force does not 

produce a constant acceleration and indeed acceleration is the 

function of time elapsed. The instantaneous acceleration just 
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produced in the elevator is small and a man standing on the 

weighing scale in the elevator, the scale will register a less 

reading. The downward force exerted by a man or any object 

placed on the weighing scale is reduced by an amount (1 −
 𝑣2/𝑐2). This outstanding result also holds good for the case 

of gravitational field. The principle of equivalence also 

requires to do so. In terms of gravitational field, 𝑎 = g and 

𝐹ₒ = 𝐹𝑔𝑟𝑎𝑣 then we have. 

𝑚𝑔 = 𝐹𝑔𝑟𝑎𝑣( 1 − 𝑣2/𝑐2) 

Clearly, the mass of an object or anybody else resting on the 

imaginary earth running with high speed is going on 

increasing, its weight is going on decreasing. The gravitational 

field of the imaginary earth has been decreased by an amount 

(1-v2/c2). In case if the imaginary earth is moving with 𝑣 =
0.866𝑐, its strength will decrease by [1 − (0.866)2 ] =
0.25 = 1/4. Thus the gravitational force of an imaginary earth 

moving with v=0.866c also decreases to (1/4)th of its rest force 

as in the case of centripetal force. 

COLLABORATION 

Let’s see the beauty and eternity of this result on a broad 

level that how the measurement of gravity is affected by 

motion. This is our solar system consisting of a heavy star at 

the center and having nine planets revolving around, let 

including Pluto too obeying well-known Kepler’s laws 

(KEPLER’S) and also some of the satellites revolving around 

their respective planets under the same Keplerian’s picture. 

The working principle necessary for this entire system is the 

gravitational force. Now Let’s suppose that at any later instant  

all the planets revolving around the sun suddenly stops their 

motion around the sun and similarly at the same instant all the 

satellites revolving around their respective planets also comes 

to rest, then what will happen? After freezing the entire solar 

system in this way all the planets along with their respective 

satellites will starts to fall one after one towards the sun. 

Eventually a time will reach that the entire solar system will 

coalesce into a single body. Let’s now see that how this 

fascinating and fantastic event starts and comes to an end. 

Taking a start from the mercury first as it is the nearest 

neighbour to sun. Suppose that Ms be the mass of sun and let 

𝑚 be the mass of mercury. Let at any instant t say during the 

fall 𝑎 be the distance between their centers (Fig.21).  

 
Fig 21 

 

Now the gravitational force acting on mercury is. 

𝐹 = −𝐺𝑀𝑠𝑚 𝛼2⁄         (8)            

We know that  𝐹 = 𝑚𝑎 = 𝑚
𝑑𝑣

𝑑𝑡
= 𝑚

𝑑𝑣

𝑑𝛼
∙
𝑑𝛼

𝑑𝑡
 . Putting this 

expression in equation (8) we have. 

𝑚𝑣 ∙
𝑑𝑣

𝑑𝛼
= −𝐺𝑀𝑠𝑚 𝛼2⁄    i.e.  𝑣. 𝑑𝑣 =

−𝐺𝑀𝑠

𝛼2 𝑑𝛼 

Integrating we get   ∫𝑣𝑑𝑣 = −𝐺𝑀𝑠 ∫(𝛼)−2𝑑𝛼  

𝑣2

2
= −𝐺𝑀𝑠 [

(𝛼)−1

−1
] + 𝐴 

𝑣2

2
=

𝐺𝑀𝑠

𝛼
+ 𝐴      (9) 

Let β be the distance between the mercury and sun at the 

instant when the mercury just refuse to revolve around the sun 

(Fig.22), then we have.  

 

 
Fig 22 

 

We know that 𝑣 = 0, when 𝛼 =  𝛽. Therefore Eq(9) 

becomes as, 
(0)2

2
=

𝐺𝑀𝑠

𝛽
+ 𝐴   so  𝐴 =

−𝐺𝑀𝑠

𝛽
  . 

Now putting this in equation (9) we have. 

𝑣2

2
=

𝐺𝑀𝑠

𝛼
−

𝐺𝑀𝑠

𝛽
= 𝐺𝑀𝑠(

1

𝛼
−

1

𝛽
) 

𝑣2 = 2𝐺𝑀𝑠 [
𝛽 − 𝛼

𝛼. 𝛽
] =

2𝐺𝑀𝑠

𝛽
[
𝛽 − 𝛼

𝛼
] 

Taking the square root we have.  𝑣 = √
2𝐺𝑀𝑠

𝛽
 ∙ √

𝛽−𝛼

𝛼
   

Now  𝑣 =
𝑑𝛼

𝑑𝑡
= √

2𝐺𝑀𝑠

𝛽
 ∙ √

𝛽−𝛼

𝛼
  then,  

𝑑𝑡 = √
𝛽

2𝐺𝑀𝑠

∙
√𝛼

√𝛽 − 𝛼
∙ 𝑑𝛼 

Integrating when 𝑡 = 0, 𝑣 = 0 and 𝛼 =  𝛽. So we have 

∫ 𝑑𝑡 = √
𝛽

2𝐺𝑀𝑠

𝑡

0

∙ ∫
√𝛼

√𝛽 − 𝛼
∙ 𝑑𝛼

0

𝛽

 

𝑡 = √
𝛽

2𝐺𝑀𝑠
 ∙ ∫

√𝛼

√𝛽−𝛼
∙ 𝑑𝛼

0

𝛽
    (10) 

Let  √𝛽 − 𝛼 = 𝑦 , then  𝛽 − 𝛼 = 𝑦2  and   𝛽 − 𝑦2 = 𝛼 . Now  
𝑑

𝑑𝛼
(𝛽 − 𝛼) =

𝑑

𝑑𝛼
(𝑦2) , we have  0 −

𝑑𝛼

𝑑𝛼
= 2𝑦.

𝑑𝑦

𝑑𝛼
 −𝑑𝛼 =

2𝑦𝑑𝑦 , thus we have  𝑑𝛼 = −2𝑦𝑑𝑦. When α = β, then y=0, 

when α = 0, then y =√𝛽 . Now equation (10) takes the form. 

𝑡 = √
𝛽

2𝐺𝑀𝑠

 ∙ ∫
√𝛽 − 𝑦2

𝑦
∙ (−2𝑦𝑑𝑦)

√𝛽

0

 

𝑡 = −2.√
𝛽

2𝐺𝑀𝑠
 ∙ ∫ √𝛽 − 𝑦2 ∙ 𝑑𝑦

√𝛽

0
  (11) 

𝑡 = −2.√
𝛽

2𝐺𝑀𝑠

 ∙ ∫ √(√𝛽 )
2
− 𝑦2 ∙ 𝑑𝑦

√𝛽

0

 

if  𝑦 = √𝛽     then, 

 √𝛽 − 𝑦2 = √(√𝛽 )
2
− 𝑦2 = √(√𝛽 )

2
− (√𝛽 . sin 𝑓)

2
=

√ 𝛽(1 − sin2 𝑓) = √𝛽.√1 − sin2 𝑓 = √𝛽.√cos2 𝑓 =

√𝛽. cos 𝑓  
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i.e. ∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 = ∫√𝛽. cos 𝑓 . √𝛽. cos 𝑓𝑑𝑓 =

𝛽 ∫ cos2 𝑓𝑑𝑓 =
𝛽

2
∫ 2 cos2 𝑓𝑑𝑓 

=
𝛽

2
∫(1 + cos 2𝑓) 𝑑𝑓 

∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 =
𝛽

2
∫𝑑𝑓 +

𝛽

2
∫cos 2𝑓 𝑑𝑓

=
𝛽

2
(𝑓) +

𝛽

2
[
sin 2𝑓

2
] + 𝑘 

where k, is constant of integration 

∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 =
𝛽

2
(𝑓) +

𝛽

2
[
2 sin 𝑓 cos 𝑓

2
] + 𝑘  

∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 =
𝛽

2
(𝑓) +

𝛽

2
[sin 𝑓 cos 𝑓] + 𝑘    (12) 

 

But  √𝛽 . sin 𝑓 = 𝑦,  we have  𝑓 = sin−1(
𝑦

√𝛽 
) , and  

𝛽

2
(sin 𝑓) =

√𝛽.√𝛽 .sin 𝑓

2
=

𝑦.√𝛽

2
 , and  cos 𝑓 = √1 − sin2 𝑓 =

√1 −
𝑦2

𝛽
  , now with these substitutions Eq (12) becomes as, 

∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 =
𝛽

2
∙ sin−1(

𝑦

√𝛽 
) +

𝑦.√𝛽

2
∙ √1 −

𝑦2

𝛽
+ 𝑘 

∫√𝛽 − 𝑦2 ∙ 𝑑𝑦 =
𝛽

2
∙ sin−1(

𝑦

√𝛽 
) +

𝑦

2
√𝛽 − 𝑦2 + 𝑘  (13) 

Now substituting equation(13) in equation(11) we have,   

𝑡 = −2.√
𝛽

2𝐺𝑀𝑠

∙ [
𝛽

2
∙ sin−1 (

𝑦

√𝛽 
) +

𝑦

2
√𝛽 − 𝑦2]

0

√𝛽

+ 𝑘 

Now applying the initial conditions i.e. when 𝑡 = 0, 𝛼 = 𝛽 

then 𝑦 = 0, so we have, 𝑘 = 0 

i.e.  𝑡 = −2.√
𝛽

2𝐺𝑀𝑠
∙ [ 

𝛽

2
∙ sin−1 (

√𝛽

√𝛽 
) +

√𝛽

2
√𝛽 − 𝛽] 

𝑡 = −2.√
𝛽

2𝐺𝑀𝑠

∙ [ 
𝛽

2
∙ sin−1 1 + 0 ]

= −2.√
𝛽

2𝐺𝑀𝑠

∙ [ 
𝛽

2
∙ sin−1 1 ]

=
− sin−1 1. 𝛽

3
2⁄

√2𝐺𝑀𝑠

 

After simplification we dropping the –ve sign, we have the 

exact time for fall as. 

𝑡 =
90𝛽

3
2⁄

√2𝐺𝑀𝑠
    (14) 

Here MS is the mass of sun and β is the distance between the 

mercury and sun. This is the time required for mercury to 

embrace with sun. All the planets gradually will fall to sun 

number-wise one by one under the parachute of the same 

equation. Eventually the entire solar system will coalesce into 

a single body. The last victim of the sun’s gravity is Pluto. 

Now Let’s consider another solar system (i.e. an imaginary 

solar system) having the same size, the same rest mass as our 

real solar system and similarly all the planets of the imaginary 

system are alike that of the real solar system, briefly another 

facsimile of the real solar system. Now suppose that this entire 

solar system is running uniformly with a high speed in the +𝑣𝑒 

x-direction w.r.t the real one absolutely at rest in the space. Let 

the imaginary solar system too is undergoing the same process. 

For an observer having appointment on the imaginary sun, the 

equations of physics and mathematics are same as that for the 

real solar system. This observer resting on the imaginary sun 

will find that the bombardment of planets toward the 

imaginary sun follow exactly the same equation as that for the 

real solar system. For an observer resting on the imaginary sun 

the time for fall of any planet to the imaginary sun is. 

𝑡𝑖𝑚𝑔 =
90𝛽

3
2⁄

√2𝐺𝑀𝑠

 

Now the question arise, whether the observer observing this 

entire process from the vantage place of the rest frame of the 

real solar system is agree with the observer resting on the 

imaginary sun for the same time for the fall of planets to the 

imaginary sun? No, the real sun’s observer will find that it 

takes a longer time for fall than that for the imaginary sun’s 

observer. For the real sun’s observer the time for this fall is. 

𝑡𝑟𝑒𝑎𝑙 = 𝑡𝑖𝑚𝑔 ×
1

√ 1 − 𝑣2/𝑐2
=

90. 𝛽
3

2⁄

√2𝐺𝑀𝑠

×
1

√ 1 − 𝑣2/𝑐2

=
90. 𝛽

3
2⁄

√2𝐺( 1 − 𝑣2/𝑐2)𝑀𝑠

 

 

Open your mind please and look carefully, what is 

happening with G ? Again G is losing its weight by an amount 

(1- v2/c2). The gravitational field of the entire solar system is 

going on decreasing by the same rate. Now for an instance we 

suppose that if the real solar system takes 100 years to coalesce 

into a single body, then the observer resting on the imaginary 

sun exactly will measure that it too requires 100 years, for the 

imaginary solar system to coalesce into a single body. But on 

the other hand the real sun’s observer will register that it takes  

100 √ 1 − 𝑣2/𝑐2⁄  years for this imaginary solar system to 

well-mix. For example if this entire solar system is running 

with 𝑣 = 0.6𝑐, the imaginary sun’s observer claims that it 

takes 100 years for coalescence. But on the other hand the real 

sun’s observer will find something like this much. 

𝑡𝑟𝑒𝑎𝑙 = 𝑡𝑖𝑚𝑔 ×
1

√ 1 − 𝑣2/𝑐2
= 125 𝑦𝑒𝑎𝑟𝑠 

 

Obviously for the real sun’s observer 125 years are required 

for integration into a single body. Similarly for example, if  

𝑣𝑖𝑚𝑔 = 0.866𝑐, then again 𝑡𝑖𝑚𝑔 = 100𝑦𝑒𝑎𝑟𝑠  and 𝑡𝑟𝑒𝑎𝑙 =
100

√1−(0.866)2
=

100

0.5
= 200 𝑦𝑒𝑎𝑟𝑠, i.e. if the imaginary solar 

system is running with 𝑣 = 0.866𝑐, then again time required 

for integration according to the imaginary observer is 100 

years and that for the real sun’s observer the time of integration 

is 200 years for the same event. 

In case of strong field less amount of time is required to 

coalesce into a single body, for a weak field definitely longer 

time is required for coalescence. In case if 𝑣𝑖𝑚𝑔 = 0.866𝑐, the 

value of ‘G’ for the imaginary system as measured from the 

rest frame of the real solar system is,  𝐺( 1 − 𝑣2/𝑐2) =

𝐺[−(0.866)2] =
1

4
𝐺 the gravitational field of the imaginary 

system decreases to one fourth (1/4)th of its rest field as 

observed from the rest frame of the real solar system. 

EXPERIMENTAL PROOF 

(The precession of the perihelion of mercury) 

Consider a single solar system (Kenneth, 1983) consisting 

of a massive sun of mass 𝑀𝑠 and a single light planet revolving 
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around elliptically according to the Kepler’s first law of the 

planetary motion having the sun as one focus of the ellipse. 

According to the Newtonian gravitation (inverse square law) 

the orbit is a perfect ellipse with the sun at one focus. The 

equation for the ellipse is. 

𝑟 = 𝑟𝑚𝑖𝑛 .
1 + 𝑒

1 + 𝑒. cos θ
 

Here 𝑟𝑚𝑖𝑛  is the minimum distance between a planet ang the 

sun and 𝑒 is the eccentricity of the ellipse. By eccentricity we 

mean the degree to which an ellipse is non-circular. For ellipse 

𝑒 is always less than unity, for circle 𝑒 = 0, for parabola 𝑒 =
1 and that for parabola 𝑒 is always greater than unity, whereas 

𝑟 = 𝑟𝑚𝑖𝑛  is the closest approach of the planets to the sun and 

at 𝑟 = 𝑟𝑚𝑖𝑛  the planet is said to be at its perihelion. This occurs 

regularly exactly at the same point in space, where 𝜃 =  0, 

2𝜋, 4𝜋, 6𝜋, 8𝜋… etc. Now for the case of mercury the orbit 

followed by mercury is not quite a closed ellipse.  

 

 
Fig 23 

As the mercury passes its perihelion, the closest point of 

approach to the sun (Fig.23) the perihelion slightly little shifts 

of its original path by an amount 𝛥𝜃 say. After completing one 

orbit the mercury returns to 𝑟𝑚𝑖𝑛 but a slightly different θ, i.e. 

𝛥𝜃 say. Now in such a case we have. 

𝑟 = 𝑟𝑚𝑖𝑛 .
1 + 𝑒

1 + 𝑒 cos( θ − Δθ)
 

Although this shift 𝛥𝜃 is an extremely a very small quantity, 

but this effect is cumulative i.e. it builds up orbit after orbit and 

after 𝑁 orbits say, the perihelion has advanced by an amount 

𝑁𝛥𝜃. As a result over many orbits, the perihelion will slowly 

rotate about the sun. This effect is termed as ‘the precession of 

the perihelion’. Now the question arises, why this precession 

occurs ? Consider a particle of mass 𝑚 in a circular motion 

having a linear momentum 𝑝 ⃗⃗⃗    at a position vector 𝑟  relative to 

the centre 𝑂 fixed in an inertial frame as shown (Fig.24).  

 

 
Fig 24 

 

The angular momentum of a particle about 𝑂 is a vector 

represented by symbol ‘𝐽 ’ and is defined as 𝐽 = 𝑟 × 𝑝 . The 

direction of ‘𝐽 ’ is perpendicular to the plane formed by 𝑟  and 

𝑝  according to the right hand rule and its magnitude is equal to 

the area of the plane formed by 𝑟 × 𝑝 .  
According to the law of conservation of angular momentum 

“in the absence of any external torque the angular momentum 

is constant” i.e. 𝐽 = 𝑟 × 𝑝 = 𝑚𝑣𝑟 = 𝑚𝜔𝑟2 = constant. Now 

according to the Kepler’s 2nd law for planetary motion 

(Russell, 1964) “the areal velocity is constant in the planetary 

motion i.e. the line joining the centers of a planet and the sun 

sweeps out equal areas in equal intervals of time”. This is 

called the law of areas. The Kepler’s 2nd law is in agreement 

with the law of conservation of angular momentum. According 

to the Kepler’s 1st law (Russell, 1964) all the planets execute 

their motion in elliptical orbits around the sun, having the sun 

as one focus of the ellipse. Now in order to conserve the 

angular momentum each planet has to move faster at the point 

of the closest approach to the sun than at the farthest point. 

This is so because at these points the angular momentum is 

𝑚𝑣𝑟 and this has to be conserved all the way. Thus when 𝑟 

becomes shorter 𝑉 must becomes larger in order to keep the 

angular momentum equal to 𝑚𝑣𝑟 (Fig.25).  

 
Fig 25 

 

Now look at this point carefully. As the distance between the 

mercury and sun decreases, its velocity increases. With this 

increase in velocity the gravitational field of mercury 

gradually decreases. At the perihelion the mercury has the 

highest speed and its field has reached to its lowest level. This 

weak field is no more able to cope with the angular momentum 

vector 𝐽 . The victorious angular momentum vector  𝐽   now is 

overpowering the economy of the mercury’s weak field at this 

stage. As a result the perihelion of the mercury shifts little of 

its right course. Although the speed of mercury is non-

relativistic and no doubt that this change in the mercury’s field 

is extremely a very small, but in fact this small change in the 

mercury’s field is responsible for a small portion of this 

precession along with the combined effect due to general 

relativity. In fact it is the dominant role of 𝐽  (angular 

momentum vector) responsible for the fractional part of the 

complete precession. Although Kepler’s laws showed that the 

planetary motion could be described with a great simplicity if 

the sun was taken as a reference body, but their reality and 

physical significance were not fully appreciated to the rest of 

the world. These laws were purely empirical in nature i.e. 

based on observations and experiments only without any 

theoretical interpretation. In formulating these laws Kepler had 

no concept of force as a main cause of the observed 

regularities. Thanks to Isaac Newton, the genius for all times 

by born that took a bold step in this respect and successfully 

extended the concept of force to the Kepler’s laws and was 

then able to formulate the law of universal gravitation. 

Newton’s gravitational law for the planetary motion demanded 

each planet to be attracted towards the sun with an “inverse 

square force”. In this way Newton successfully accounted for 

the motion of the planets in the solar system and the bodies 



 

IJFPS, Vol 7, No 2, pp 9-22, June , 2017  S.U.Rehman 

 

21 
 

falling near the earth surface with one common concept. A 

great triumph indeed, no doubt. No doubt, Newton by his very 

deep and profound insight effectively accounted for what was 

responsible for the mechanism of falling bodies near the earth 

surface as well as for keeping the planets in orbital motion 

around the sun and so many contributions to science often 

tribute to this very great genius man of the history. But despite 

all these achievements and full time success, he had no idea of 

the decreasing fields. That is why the inverse square law fails 

to stand with this peculiar effect. Not only the general relativity 

alone, but special relativity too is responsible for this effect up 

to some extent.  

It is now a time to have a respite for a while and to release 

the tension of much discussion and lengthy calculations. Let’s 

consider this interesting situation before going into more 

detail. Let two fast persons, Sapna and Sohana, having equal 

rest masses. Sapna is resting on the real earth at rest in a space 

whereas her other friend Sohana is resting on the imaginary 

earth identical to the real one in all respect, moving with 𝑣 =
0.866𝑐 relative to the real one. Let each the friend became a 

pregnant at the same time having fair dealings. Both the friends 

are standing on a weighing scale. The rest observer i.e. Sapna 

has a lovely child in her lap exactly after nine months. Let’s 

see this situation with Sohana’s point of view i.e. the 

imaginary earth observer. According to Sohana, Sapna,s mass 

is less than me while her weight is greater than me according 

to the reading of the scale. Also the period of Sapna’s 

pregnancy as appeared to Sohana is 𝑡𝑆𝑜ℎ𝑎𝑛𝑎 =

9√1 − (0.866)2 = 4.5 𝑚𝑜𝑛𝑡ℎ𝑠. According to Sohana her 

friend has delivered the child before the maturity time. Now 

Let’s see the same situation with Sapna,s point of view. 

According to Sapna, Sohana,s mass is twice her rest mass but 

her weight is three fourth (3/4)th times less than her rest weight 

as per scale reading. Also according to Sapna her friend is still 

pregnant after the due date. May be a serious medical problem 

with her friend. Both the friends does not know this dilemma. 

Very bad and a puzzling situation for each one but an 

interesting one for us. 

THE LAST ADVENTURE 

The full and final attack will now be assaulted with the 

weapons of quantum physics, that firmly will establish the 

belief that G is dying. We have a natural unit of time called the 

Plank time denoted by tp that brings the relativity constant 𝑐, 

the gravitational constant ‘G’ and the quantum constant ‘h’ 

into a single picture and also tells the story of the times when 

the universe was in its infancy. The Plank time tp  the shortest 

unit of time ever formulated which on the dimensional grounds 

has the form. Plank time, 

𝑡𝑝 = √
𝐺. ћ

𝑐5
 

The dilated shape of the Plank time 𝑡𝑝  is, 

𝑡𝑝 =
𝑡𝑝
′

√ 1 − 𝑣2/𝑐2
 

or 

𝑡𝑝
′ = 𝑡𝑝 √1 − 𝑣2/𝑐2 . 

 

Now we have 

𝑡𝑝
′ = (√ 1 − 𝑣2/𝑐2). √

𝐺. ћ

𝑐5
= √( 1 − 𝑣2/𝑐2) ∙

𝐺. ћ

𝑐5
 

Now here arises three possibilities with the entrance of the 

relativistic factor 1 √ 1 − 𝑣2/𝑐2⁄  into Plank time 𝑡𝑝 . 

 

First possibility: Will the entrance of the relativistic factor 

i.e. 1 √ 1 − 𝑣2/𝑐2⁄  into Plank time change 𝑐, the speed of light 

in a free space? This is impossible for 𝑐 to be affected. The 

speed of light 𝑐 is same for all observers when measured and 

where measured irrespective of their state of motion, 

completely independent of any relative motion. 

 

Second possibility:  This possibility arises for ℎ, the Plank 

constant. Will ℎ be affected with the entrance of this 

relativistic factor into Plank time? We know that ℎ is Plank 

constant that comes in Plank energy equation i.e. 𝐸 = ℎ𝜐. 

With any change in Plank constant ℎ, consequently the entire 

pattern of the energy conservation rules ultimately will change. 

However the relativists of the entire world have their firm 

belief that the laws of conservation of momentum as well as 

that of energy both holds good in the world of relativity. Thus 

ℎ too is preventing itself of any change. 

 

Third possibility: The unfortunate lottery now falls into the 

lap of 𝐺. Ultimately the advent of the relativistic factor into 

Plank time is going to change 𝐺 by an amount (1-v2/c2). Now 

the complete dilated shape of the Plank time tp is. 

 

𝑡𝑝
′ = √

𝐺( 1 − 𝑣2/𝑐2). ћ

𝑐5
 

 

Thus the Plank time tp is dilated by an amount, 

1 √ 1 − 𝑣2/𝑐2⁄   at the cost of 𝐺. Another approach to do the 

same can be made easy with the help of Plank length lp.  

 

PLANK LENGTH 

  𝑙𝑝 = √𝐺. ћ 𝑐3 ⁄  , 

Now the contracted shape of the Plank length i.e. 𝑙𝑝
′  is 

 

𝑙𝑝
′ = 𝑙𝑝. √ 1 − 𝑣2/𝑐2 = √𝐺( 1 − 𝑣2/𝑐2). ћ 𝑐3 ⁄  

 

Contraction occurs in length at the cost of 𝐺. Now Let’s 

consider the case of Plank mass i.e. 𝑚𝑝 = √ћ. 𝑐 𝐺 ⁄  . The 

relativistic version of the Plank mass i.e. 𝑚𝑝
′  is 

 

𝑚𝑝
′ =

𝑚𝑝

√ 1 − 𝑣2/𝑐2
=

√ћ. 𝑐 𝐺 ⁄

√ 1 − 𝑣2/𝑐2
= √

ћ. 𝑐

𝐺( 1 − 𝑣2/𝑐2)
 

 

i.e. mass is going on increasing at the cost of ‘G’. Let’s 

consider now the case of Plank charge 𝑞𝑝. Plank charge,  𝑞𝑝 =

√4𝜋𝜀𝑜ћ𝑐 Here we see that 𝐺 plays no role in this case. Now 

what can we conclude? The answer is that the electric charge 

‘q’ is an invariant quantity and cannot be affected by any 

relative motion and has the same value in all frames. Now we 

take into account the case of Plank temperature 𝑇𝑝. 
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PLANK TEMPERATURE 
 

𝑇𝑝 = √ћ. 𝑐5 𝐺. 𝐾𝐵
2⁄  

 

Here KB that appears in this expression is Boltzmann 

constant i.e. the universal gas constant per molecule. Now look 

at, if 𝐺 changes its character in the same way as in the previous 

cases, then what will happen? Look at the Plank temperature 

carefully. Clearly the internal temperature of the system 

increases at high speeds at the cost of 𝐺. 

SUMMARY OF THE OUTCOMES & COROLLARY 

Our common judgment about the gravity is something like 

this much, that the gravitational constant G is completely a 

constant character, completely independent of any relative 

motion. Now but by all accounts G is proving itself to be 

completely a relative character and that G is not independent 

of motion. A new theoretical discipline, hitherto an unseen, 

unheard para in the stories of relativity. Gravity and time are 

inter-related to each other. Gravity alters time, time alters 

gravity as well. The space geometry now is (𝑥, 𝑦, 𝑧, 𝑡, 𝐺).  

As a test, we have the universal gravitational constant G is 

absolutely a relative phenomenon. In order to check this 

phenomenon practically, Let’s propose an idealized test. If 

Mercury and Pluto were of same mass and if we place two 

identical masses, one on Pluto and the other on mercury along 

with the instruments of accurate and precise measuring the 

weights and suppose that if we have the mechanism of 

switching off the sun’s gravity. Then in the absence of sun 

gravity, Kepler’s laws will fly-off and each of the planet will 

move in a straight line with mercury running faster than Pluto. 

Now the observers on each planet will agree that the value of 

G is less for mercury than that for Pluto. If mercury is running 

with velocity V relative to Pluto then. 

 

GMercury = GPluto(1 – v2/c2) 

 

If our earth suddenly starts running with the speed of light say 

(contradiction to special relativity) then what will happen? Yes 

all the inhabitants of earth will find that the gravitational field 

of earth has been switched-off and Einstein’s space curvature 

will fly-off. The distant galaxies receding away from us with 

high velocities in the vast universe are enjoying the facility of 

the low cost of G. 
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