IJFPS, Vol 7, No 3, pp 30-33, Sept, 2017 DOI:10.14331/ijfps.2017.330105 *R.S Torogh* http://fundamentaljournals.org/ijfps/index.html

Multiple positive solutions for some P-Laplacian nonlinear problem at infinity

Robabeh Sahandi Torogh

Department of Mathematics, Varamin-Pishva branch, Islamic Azad University Varamin, Iran

sahandi@iauvaramin.ac.ir

(Received July 2017; Published Sep 2017)

ABSTRACT

In recent years, boundary value problem of second-order have received a lot of attention. In this paper, I study the existence of positive solutions for a class of p-Laplacian boundary value problem at infinity. The fixed point theorems in cones is the our main tools to prove the existence of solutions. I provide sufficient conditions under which this system has solution. I establish some propositions to prove the existence of positive solutions for these equations.

Keywords: Boundary value problem, Positive solution, (p,q) -Laplacian system, Fixed point

DOI:10.14331/ijfps.2017.330105

INTRODUCTION

In recent years, boundary value problems have received a lot of attention. For example (Liang & Zhang, 2009; Pang, Lian, & Ge, 2007) have studied the existence of positive solutions for some boundary value problems.

In this paper, we study the existence of positive solutions for the following system:

$$\begin{cases} (\phi_p(u'))' + m(t)f(u,v) = 0 \\ (\phi_p(v'))' + n(t)g(u,v) = 0 \end{cases}$$
 (1)

$$\begin{cases} u(0) - \alpha_0(u'(\eta)) = 0, & u'(+\infty) = 0, \\ v(0) - \beta_0(v'(\xi)) = 0, & v'(+\infty) = 0 \end{cases}$$
 (2

Where

$$\phi_p(s) = |s|^{p-2} s$$
, $p > 1$, $\phi_q = (\phi_p)^{-1}$, $\frac{1}{p} + \frac{1}{q} = 1$,

 $\eta, \xi \in (0, +\infty), m, n : [0, +\infty) \rightarrow [0, +\infty)$ have countably many singularities on $[0, +\infty)$. α_0, β_0 are functions which satisfy the conditions that there are nonnegative $\alpha_1, \beta_1, \alpha_2, \beta_2$ such that

$$\alpha_1 x \le \alpha_0(x) \le \alpha_2 x$$
, $\beta_1 x \le \beta_0(x) \le \beta_2 x$ for $x, y \in \Re$.

Liang & Zhang, (2009), studied the existence of positive solutions for

$$\begin{cases} (\phi(u'(t)))' + a(t)f(t,u(t)) = 0, 0 \in [0,+\infty) \\ u(0) - B_0 u'(\eta) = 0, \quad u'(+\infty) = 0 \end{cases}$$

Where $\phi(s): \Re \to \Re$ is an increasing homomorphism and $\phi(0) = 0$. $\eta \in (0, +\infty), a: [0, +\infty) \to [0, +\infty)$.

Now, we assume that the following conditions:

 H_1) $f,g \in C([0,+\infty)^2,[0,+\infty))$, $f(0,0) \neq 0, g(0,0) \neq 0$ on any subinterval of $[0,+\infty)$ and when u, v are bounded, f((1+t)u,(1+t)v), g((1+t)u,(1+t)v) are bounded on $[0,+\infty)^2$.

 H_2) There exists a sequence $\left\{t_i\right\}_{i=1}^\infty$ such that $1 \leq t_{i+1} \leq t_i$, $\lim_{i \to +\infty} t_i = t_0 < \infty$, $t_0 > 1$, $\lim_{t \to t_i} m(t) = \infty$, $i = 1, 2, \cdots$, and

$$\int_0^{+\infty} \phi_p^{-1} \left(\int_s^{+\infty} m(t) dt \right) ds < +\infty$$

$$\int_0^{+\infty} \phi_p^{-1} (\int_s^{+\infty} n(t) dt) ds < +\infty,$$

(3)

 H_3) There exists a sequence $\left\{t_i\right\}_{i=1}^{\infty}$ such that $0 < t_{i+1} < t_i < 1$, $\lim_{i \to +\infty} t_i = t_0 < \infty$, $t_0 > 1$, $\lim_{t \to t_i} a(t) = \infty$, $i = 1, 2, \cdots$ and (3) holds.

SOME DEFINITIONS AND FIXED POIN THEOREMS

Definition (1)

Let $(X, \|.\|)$ be a real Banach space and a non-empty, closed, convex C subset of X is called a Cone of X, If it satisfies the following conditions:

i) If $x \in C$ and $\lambda \ge 0$ implies that $\lambda x \in C$, ii) If $x \in C$ and $-x \in C$ implies that x = 0,

Every cone C subset of X includes an ordering in X which is given by $x \le y$ if and only if $y - x \in C$.

Definition (2)

A map $\psi: P \to [0, +\infty)$ is called nonnegative continuous concave functional provided ψ is nonnegative, continuous and satisfies,

$$\psi(tx + (1-t)y) \ge t\psi(x) + (1-t)\psi(y)$$

for all $x, y \in P$ and $t \in [0, 1]$.

Similarly, we say the map β is a nonnegative continuous convex functional on a cone P of X $\beta: P \to [0, +\infty)$ is continuous and $\beta(tx + (1-t)y) \ge t\beta(x) + (1-t)\beta(y)$ for all $x, y \in P$ and $t \in [0, 1]$. The main tool of this paper is the following fixed-point:

Theorem (3) (Deimling, 2010).

Let E be a Banach space and P subset of E be a cone in E. let r>0 define $\Omega_r=\{x\in P|\|x\|< r\}$. Assume that $T\colon P\cap \overline{\Omega_r}\to P$ is completely continuous operator such that $Tx\neq x$ for $x\in\partial\Omega_r$,

i) If $||Tu|| \le ||u||$ for $u \in \partial \Omega_r$ then $i(T, \Omega_r, P) = 1$

ii) If $||Tu|| \ge ||u||$ for $u \in \partial \Omega_r$ then $i(T, \Omega_r, P) = 0$

PRELIMINARIES AND LEMMAS

Let,

$$\begin{split} E &= \left\{ (u,v) \in c[0,+\infty) \right. \\ &\times c[0,+\infty) \left| \sup_{0 \le t} \frac{|u(t)|}{1+t} < \infty \right. , \\ &\sup_{0 \le t} \frac{|u(t)|}{1+t} < \infty \end{split}$$

Then E is a banach space with the norm $\|(u,v)\| = \|u\| + \|v\|$ where $\|u\| = \sup_{0 \le t} \frac{|u(t)|}{1+t} < +\infty$.

Define cone K subset of E by

$$K = \left\{ (u, v) \in E \middle| u, v \text{ are concaves}, \lim_{t \to \infty} u'(t) = 0, \lim_{t \to \infty} v'(t) = 0, \right\}$$

Lemma (4) (Liang & Zhang, 2009).

Suppose H_2 holds. Then for any $\gamma \in (1,+\infty)$ which satisfies $0<\int_{\frac{1}{\gamma}}^{\gamma}m(t)dt<+\infty$, $0<\int_{\frac{1}{\gamma}}^{\gamma}n(t)dt<+\infty$, and the functions

$$K_{1}(t) = \int_{\frac{1}{s_{0}}}^{t} \phi_{p}^{-1} \left(\int_{s}^{s_{0}} m(\rho) d\rho \right) ds + \alpha_{1} \phi_{p}^{-1} \left(\int_{t}^{s_{0}} n(\rho) d\rho \right)$$
$$K_{2}(t) = \int_{\frac{1}{s_{0}}}^{t} \phi_{p}^{-1} \left(\int_{s}^{s_{0}} n(\rho) d\rho \right) ds + \beta_{1} \phi_{p}^{-1} \left(\int_{t}^{s_{0}} n(\rho) d\rho \right)$$

Are continuous and positive on $\left[\frac{1}{s_0}, s_0\right]$. In addition $H_i = \min_{t \in \left[\frac{1}{s_0}, s_0\right]} K_i(t) > 0, \ i = 1,2.$

Lemma (5) (Liang & Zhang, 2009).

Let u be a nonnegative concave function on $[0,+\infty)$ and $\lim_{t\to\infty} u'(t)=0$, and [a,b] be a subset of $(0,+\infty)$.

Then
$$u(t) \ge \lambda(t) \|u\|$$
 where $\lambda(t) = \{ \substack{\sigma, t \ge \sigma \\ t, t \le \sigma}$ and $\sigma = \inf \{ \xi \in [0, +\infty) : \sup_{0 \le t < +\infty} \frac{|u(t)|}{1+t} = \frac{|u(\xi)|}{1+\xi} \}$

Now, we define an operator

$$T: K \to c[0, +\infty) \times c[0, +\infty)$$
$$T(u, v)(t) = (T_1(u, v), T_2(u, v))(t)$$

Such that

$$T_1(u,v) = \int_0^t \phi_p^{-1} \left(\int_s^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) ds + \alpha_0 \phi_p^{-1} \left(\int_s^{s_0} m(\rho) f(u(\rho), v(\rho)) d\rho \right), \tag{4}$$

$$T_2(u,v) = \int_0^t \phi_p^{-1} \left(\int_s^{+\infty} n(\rho) g(u(\rho), v(\rho)) d\rho \right) ds +$$

$$\beta_0 \phi_p^{-1} \left(\int_t^{s_0} n(\rho) g(u(\rho), v(\rho)) d\rho \right), \tag{5}$$

Lemma (6) (Liu, 2003)

Let W be a bounded subset of K. Then W is relatively compact in E if $\left\{\frac{w(t)}{1+t}\right\}$ are equicontinuous on any finite subinterval of $[0,+\infty)$ and for any $\varepsilon>0$ there exists N>0 such that $\left|\frac{x(t_1)}{1+t_1}-\frac{x(t_2)}{1+t_2}\right|<\varepsilon$, uniformly with respect to $x\in W$ as $t_1,t_2\geq N$, where $W(t)=\{x(t):x\in W\}, t\in [0,+\infty)$.

Lemma (7)

Let H_1, H_2, H_3 hold. Then $T: K \to K$ is completely continuous.

MAIN RESULT

Theorem (8)

Suppose that H_1, H_2, H_3 hold. Let $\{\lambda_k\}_{k=1}^{+\infty}$ such that $\lambda_k \in (t_k, t_{k+1}), k = 1, 2, \cdots$. Let $\{m_k\}_{k=1}^{+\infty}$ and $\{M_k\}_{k=1}^{+\infty}$ be such that $M_{k+1} < \frac{\Gamma(\frac{1}{\lambda_k})}{1+\lambda_k} \ m_k < m_k < q m_k < M_k$, and for $k \in N$, we assume that f, g satisfy,

 H_4) $f((1+t)u, (1+t)v) \ge \phi_p(qm_k), g((1+t)u, (1+t)v) \ge \phi_p(qm_k)$

For

$$(t,u,v) \in \left[\frac{1}{\lambda_k},\ \lambda_k\right] \times \left[\frac{\Gamma\left(\frac{1}{\lambda_k}\right)}{1+\lambda_k}\ m_k,m_k\right] \times \left[\frac{\Gamma\left(\frac{1}{\lambda_k}\right)}{1+\lambda_k}\ m_k,m_k\right].$$

$$H_5$$
) $f((1+t)u, (1+t)v) \ge \phi_p(QM_k)$, $g((1+t)u, (1+t)v) \ge \phi_p(QM_k)$,

For $(t, u, v) \in [0, +\infty] \times [0, M_k] \times [0, M_k]$ where

$$q \in (\Gamma_1, +\infty), Q \in (0, \Gamma_2) , \qquad \Gamma_1 = \frac{1+t_0}{L} , L > 0,$$

$$\Gamma_2 = \frac{1}{\max(\phi_p^{-1}(\int_0^{+\infty} m(\rho)d\rho)(1+\alpha_2), \ \phi_p^{-1}(\int_0^{+\infty} n(\rho)d\rho)(1+\beta_2))}$$

Then the boundary value system (1) and (2) has infinitely many solutions $\{(u_k, v_k)\}_{k=1}^{+\infty}$ such that $m_k \leq \|(u_k, v_k)\| \leq M_k$, $k = 1, 2, \cdots$.

Proof. We assume that the sequence $\{\Omega_{1k}\}_{k=1}^{+\infty}$ and $\{\Omega_{2k}\}_{k=1}^{+\infty}$ of open subsets of E be as following: $\Omega_{1k} = \{(u,v) \in K | ||(u,v)|| < 2m_k\},$

$$\Omega_{2k} = \{(u, v) \in K | ||(u, v)|| < 2M_k\}, \quad k = 1, 2, \dots.$$

We know that $1 < t_0 \le t_{k+1} < \lambda_k < t_k < +\infty, k = 1,2,\cdots$, so from lemma (5) for $k \in N$ and $u,v \in K$ we have $u(t) \ge \Gamma(t)\|u\|$, $t \in \left[\frac{1}{\lambda_k},\ \lambda_k\right]$.

Let $k \in \mathbb{N}$ and $(u, v) \in \partial \Omega_{1k}$, then we have

$$\begin{split} 2m_k &= \|(u,v)\| = \sup_{t \geq 0} \frac{|u(t)|}{1+t} + \sup_{t \geq 0} \frac{|v(t)|}{1+t} \geq \frac{\left|u(\frac{1}{\lambda_k})\right|}{1+\lambda_k} + \frac{\left|v(\frac{1}{\lambda_k})\right|}{1+\lambda_k} \\ &\geq \frac{\Gamma\left(\frac{1}{\lambda_k}\right)}{1+\lambda_k} \; (\|(u,v)\|), \; t \in \left[\frac{1}{\lambda_k}, \; \lambda_k\right]. \end{split}$$

From (H_4) we have $f((1+t)u,(1+t)v) \ge \phi_{p_1}(qm_k)$, we know that $\left(\frac{1}{t_0},t_0\right) \subseteq \left[\frac{1}{\lambda_k},\ \lambda_k\right]$, if (H_2) holds, we consider three cases:

i) If $\eta \in \left[\frac{1}{t_0}, t_0\right]$: we have;

$$||T_{1}(u,v)||$$

$$= sup_{t\geq 0} \frac{1}{1+t} \left| \int_{0}^{t} \phi_{p}^{-1} \left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) ds \right| + \alpha_{0} \phi_{p}^{-1} \left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) \right|$$

$$\geq \frac{1}{1+t_{0}} (qm_{k}) \int_{\frac{1}{t_{0}}}^{\eta} \phi_{p}^{-1} \left(\int_{s}^{t_{0}} m(\rho) d\rho \right) ds$$

$$+ \alpha_{1} \phi_{p}^{-1} \left(\int_{\eta}^{t_{0}} m(\rho) d\rho \right)$$

$$= \frac{q m_k}{1 + t_0} K_1(\eta) > \frac{Lq m_k}{1 + t_0} > 2m_k = \|(u, v)\|.$$

ii) If $\eta \in (0, \frac{1}{t_0})$ from (4) and (H_4) and lemma (4) we see : $||T_1(u, v)|| =$ $\sup_{t \ge 0} \frac{1}{1+t} \left| \int_0^t \phi_p^{-1} (\int_s^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho) ds +$ $\alpha_0 \phi_p^{-1} (\int_\eta^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho) \right|$ $\sup_{t \ge 0} \frac{1}{1+t} \alpha_1 \phi_p^{-1} (\int_{\frac{1}{t_0}}^{t_0} m(\rho) f(u(\rho), v(\rho)) d\rho)$ $\ge \frac{q m_k}{1+t_0} \alpha_1 \phi_p^{-1} (\int_{\frac{1}{t_0}}^{t_0} m(\rho) d\rho)$ $= \frac{q m_k}{1+t_0} K_1 \left(\frac{1}{t_0}\right) > \frac{Lq m_k}{1+t_0} > 2m_k = ||(u, v)||.$

iii) If $\eta \in (t_0, +\infty)$. From (4), (H_4) and lemma (4) we have $||T_1(u, v)||$ $= \sup_{t\geq 0} \frac{1}{1+t} \left| \int_0^t \phi_p^{-1} (\int_s^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho) ds \right| + \alpha_0 \phi_p^{-1} (\int_\eta^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho) \right| \geq \frac{q m_k}{1+t_0} K_1(t_0)$ $> \frac{Lq m_k}{1+t_0} > 2m_k = ||(u, v)||.$

Since

$$||T(u,v)|| = ||T_1(u,v)|| + ||T_2(u,v)|| \ge ||(u,v)||,$$

so from theorem (3) implies that

$$i(T, \Omega_{1k}, K) = 0, (6)$$

Suppose that $(u, v) \in \partial \Omega_{2k}$ and $u, v \in [0, M_k]$. Thus

$$\frac{u(t)}{1+t} \le sup_{t \ge 0} \frac{|u(t)|}{1+t} \le ||u|| = M_k \;,$$

$$\frac{v(t)}{1+t} \leq sup_{t \geq 0} \frac{|v(t)|}{1+t} \leq ||v|| = M_k$$

From (H_4) we have

$$f((1+t)u, (1+t)v) \le \phi_n(QM_k),$$

so

$$||T_{1}(u,v)|| = \sup_{t\geq 0} \frac{1}{1+t} \left| \int_{0}^{t} \phi_{p}^{-1} \left(\int_{s}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) ds + \alpha_{0} \phi_{p}^{-1} \left(\int_{\eta}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) \right| \leq (1 + \alpha_{2}) \phi_{p}^{-1} \left(\int_{0}^{+\infty} m(\rho) f(u(\rho), v(\rho)) d\rho \right) \leq Q M_{k} (1 + \alpha_{2}) \phi_{p}^{-1} \left(\int_{0}^{+\infty} m(\rho) d\rho \right) \leq M_{k} = ||u|| = \frac{1}{2} ||(u, v)||.$$

Similarly we can see $||T_2(u, v)|| \le ||v|| = \frac{1}{2}||(u, v)||$.

Then

$$||T(u,v)|| = ||T_1(u,v)|| + ||T_2(u,v)|| \le ||(u,v)||$$

for $(u,v) \in \partial \Omega_{2k}$, Hence, from theorem (3) we have

$$i(T, \Omega_{2k}, K) = 1, \tag{7}$$

Thus from additivity the fixed-point index we have

$$i(T, \Omega_{2k} \setminus \overline{\Omega_{1k}}, K) = 1$$

and T has a fixed point in $\Omega_{2k} \setminus \overline{\Omega_{1k}}$ such that

$$m_k \le ||(u, v)|| \le M_k$$
, for $k \in N$

REFERENCES

Deimling, K. (2010). *Nonlinear functional analysis*: Courier Corporation.

Liang, S., & Zhang, J. (2009). The existence of countably many positive solutions for some nonlinear three-point boundary problems on the half-line. *Nonlinear Analysis: Theory, Methods & Applications, 70*(9), 3127-3139.

Liu, Y. (2003). Existence and unboundedness of positive solutions for singular boundary value problems on half-line. *Applied Mathematics and Computation*, *144*(2), 543-556.

Pang, H., Lian, H., & Ge, W. (2007). Multiple positive solutions for second-order four-point boundary value problem. *Computers & Mathematics with Applications*, 54(9), 1267-1275.