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ABSTRACT  

 

This paper is discussing how and where imaginary numbers came to be and how their extension to our classic number line helped 

mathematics to grow even faster. We talk about the beginning of imaginary numbers and the set of rules that come with them. 

We show how an error that occurred in an equation started the discovery of these. These numbers also help us achieve a better 

perspective towards the parabolas we see every day. At the end, you can see how these new numbers found the perfect place on 

the number line and fit in well with different categories we all know. 
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INTRODUCTION 

In mathematics, a real number is a value of a continuous 

quantity that can represent a distance along a line. Real 

numbers include all rational numbers, such as integer, fraction, 

and all irrational numbers. The numbers 1, 2, 3, 4, and etc. are 

numbers we can easily understand and visualize. For example, 

two apples or five oranges make perfect sense but you can 

never visualize what -7 is. Many people had a hard time 

accepting zero or negative numbers because they would not 

make sense. However, at some point, people hit some 

problems where they could not ignore negative numbers 

anymore. This caused them to extent the number line adding 

digits before zero. Now days, when we end up with a negative 

number under a radical with an even index, we often say these 

problems have no solutions. Therefore, we need to extend our 

number line again so that we can easily work with different 

problems. Imaginary numbers have been shaped to make 

solving these problems easier and smoother. Despite the fact 

that we might still hit dead-end, but in order to reach to an 

answer for our problems and any other type of equation, it is 

needed to complete our number system even more. Imaginary 

numbers have an interesting history on how they have been 

shaped, how they are solved and how they have contributed to 

form complex numbers by the help of Greek mathematician, 

Heron of Alexandria, who lived sometime between 100 BC 
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and 100 AD (Roy, 2007). They first appeared in a study 

concerned with the dimensions of a pyramidal frustum. 

Although Heron of Alexandria recognized the conceptual 

possibility of negative numbers possessing square roots, it 

took a considerable period before they started to become of 

practical significance. This was owed to discoveries made by 

Scipione del Ferro and Girolamo Cardano roughly between 

1450 and 1600 AD. From 100 AD to the fifteenth century, very 

little information on imaginary numbers was recorded. Worthy 

of note are contributions made by scholars such as Diophanrus 

of Alexandria (circa 300 AD) and Mahaviracarya (circa 850 

AD) who both also considered the conceptual possibility of 

square roots of negative numbers. By the 18th century complex 

numbers had achieved considerable recognition and were 

starting to become written as, for example, 3 +  5𝑖, where 3 

represents what is known as the real component and 5𝑖 is the 

imaginary component. The letter 𝑖 here is representative of 

√−1 and first used by Euler in 1777.  

 

 
Fig 1  

 

Now we have the same problem with (√−1) and that is why 

mathematicians like Del Ferro, Tartagli and Bombelli came 

together to solve these. Here we aim to consider a combination 

of real numbers with non-real numbers that is call imaginary 

numbers. Mathematicians use the letter "𝑖" to symbolize the 

square root of -1(𝑖 = √−1) and first used by Euler in 1777 as 

non-real part. 

EULER AND DEL FERRO 

Cardano was the first to introduce complex numbers 𝑎 + √−𝑏 

into algebra, but had misgivings about it (Merino, 2006).  

L. Euler (1707-1783) introduced the notation 𝑖 = √−1 

(Dunham, 1999), and visualized complex numbers as points 

with rectangular coordinates, but did not give a satisfactory 

foundation for complex numbers. The example 𝑥 + 5 = 2 is 

easy and can be solved now days under seconds but it 

challenged one of the best mathematicians, Leonhard Euler, 

back in the 18th century. Euler did not know how to deal with 

negative numbers and even once said that negative numbers 

are more than infinite. Negative numbers were ignored on and 

on because people simply did not know what to do with them. 

Then, 5 centuries ago, something happened in Europe that did 

not allow mathematicians to ignore these numbers anymore. 

Del Ferro, and Italian mathematician, was trying to find a 

formula for equations with the highest power of 3, cubic 

(𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0). Since the general term is a little 

bit more complicated, Del Ferro first considered the case 

where the x2 term is missing and the last term is negative 

(𝑎𝑥3 + 𝑐𝑥 − 𝑑 = 0). Since back then, people didn’t want to 

deal with negative numbers; Del Ferro brought d to the other 

side and said that c required to be positive (𝑎𝑥3 + 𝑐𝑥 =
𝑑;  𝑑 > 0, 𝑐 > 0). Then he tried to make x alone by bringing 

everything else to the other side. It took Del Ferro some clever 

substitutions but he finally was able to find an equation, where 

just like the quadratic formula, you need to substituted 

numbers to find answers: 

𝑥 =  √  
𝑑

2
 +  √

𝑑2

4
  +   

𝑐3

27
  

3

 +   √  
𝑑

2
− √

𝑑2

4
 +  

𝑐3

27
  

3

  (1) 

 

Del Ferro kept his formula a secret until he was on his deathbed 

when he finally told his student, Antonio Foir. 

FOIR AND TARTAGLIA 

After finding out about the formula, Foir challenged a much 

more skilled mathematician, Fontana Tartaglia. Tartaglia 

claimed that he could solve cubic equations way before but it 

was all a lie. At the last minutes before the challenge, he finally 

found the way to solve them and bet Foir. The reason that 

Foir’s formula did not work well was that sometimes the 

equation would break under certain c d values. This means that 

after substituting certain numbers, you would end up with a 

negative number under the radical with the index of  2 , (𝑑 =
4 , 𝑐 = 15) 
 

𝑥3 = 15 𝑥 + 4        (2) 

 

𝑥 =  √  
𝑑

2
 +  √

𝑑2

4
 −  

𝑐2

27
  

3

 +   √  
𝑑

2
− √

𝑑2

4
 −  

𝑐2

27
  

3

  (3) 

 

𝑥 =  √ 2 +  √−121  
3

 +   √  2 − √−121  
3

    (4) 

 

CARDAN AND BOMBELLIE 

After a famous mathematician, Cardan, found out about the 

formula and its problem, he came up with a way to solve it. 

Well we usually say that there is no solutions to our problem 

when we end up with negative numbers under a radical with 

an even index but from the way that parabola are formed, we 

can see that they should always have a solution. As an 

example, if we have 𝑥2 + 1 our graph would be this: 

 
Fig 2 
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We can obviously see that the graph does not pass the x-axis 

at all. However, if we look from another perspective, we can 

see that it actually those cross the x-axis and that we were just 

looking at it from the wrong angel. This is proof that we should 

have an answer for our cubic problem despite the fact that our 

formula ends up with no solutions. Cardan knew this and was 

thinking for a way to solve the problem (Guilbeau, 1930).  

He found a smart way to go around the negative numbers but 

ended up being stuck in an algebraic loop, where he would 

start from somewhere but end up at the same place. 

Unfortunately, Cardan could not solve this problem and passed 

away. However, his student, Bombelli finally succeeded in 

solving the problem that was bothering many generations for 

years. Bombelli first accepted the fact that if both positive and 

negative numbers would not work, then there should be 

another type of numbers that did work. Then, rather than 

dreaming about a new number or a new symbol, Bombelli 

simply said let √−1 be a number itself.  

In the past, everyone agreed and said that the square root of 

negative numbers cannot exist, but Bombelli simply accepted 

them and said that they may exist. Although √−1 was said to 

be a new number for itself, Bombelli could not find a place for 

the new number on our number line. That led to the question 

that if √−1   is even a “real” number. Bombelli saw that the 

number line had been improved and extended many times 

before and that this needs to be done again so that we can fit 

our new number in. Before this, Bombelli tried to simplify 

Cardan’s equation 

 

𝑥 = √  
𝑑

2
 +  √

𝑑2

4
  +   

𝑐3

27
  

3

+  √  
𝑑

2
−  √

𝑑2

4
 +  

𝑐3

27
  

3

   (5) 

 

by saying “the root of minus 1 parts of each half of the equation 

must cancel out when added together” (a and b are constants 

we need to find) 

 

( √  2 +  √  −121    
3

 )
3

= (𝑎 + 𝑏 √−1)
3

            ,

( √  2 −  √  −121    
3

 )
3

= (𝑎 − 𝑏 √−1)
3

     (6) 

 

First, he eliminated the cube root, which then resulted in a 

system of equation 

 

2 = 𝑎(𝑎2 − 3𝑏2)        (7) 

 

11 = 𝑏(3𝑎2 − 𝑏2)       (8) 

 

However, Bombelli got around this by some checking and 

guessing. He took the original equation and substituted a few 

numbers and finally found that 4 is the solution. So now if we 

substitute 4 into our new equation we will get  𝑎 = 2;  𝑏 = 1. 

If you replace these numbers, we will see that the answer is 4. 

We have found the solution to Cardan’s problem! The 

interesting this is that nor our solution or our process contained 

(√−1), but we found out that by extending our number system 

to contain, √−1, we can solve equations like this.  

Now that we know these numbers can help us solve equations 

that were once considered “impossible”, we need to know their 

nature and where they stand on the complex plane. √−1 Was 

at first considered as a “hack” for solving some mathematical 

equations. After all, just like 0 and negative numbers, no one 

could imagine what √−1 was in the real world. That is the 

reason they have given the terrible name imaginary. √−1 Is 

actually a number, like all the other numbers, has a place on 

the complex plane, and even has a pattern. After a century 

later, Euler started using 𝑖 as a symbol instead of √−1 so that 

he would avoid writing this number on and on.  When √−1 

was named imaginary, in response, everything else on the 

number line took the name of “real”. When we then put 

together a real and an imaginary number, we get what we call 

a Complex Number (ex 3+2i). All of complex analysis can be 

developed in terms of ordered pairs of numbers, variables, and 

functions 𝑢(𝑥, 𝑦)and  𝑣(𝑥, 𝑦) (Arfken & Weber). Although 

we know about i, we cannot find a place for it on the number 

line. Now remember our original problem? We wanted to find 

a number that when multiplied by it self, lead us to a negative 

number. Well when we take 3, as an example, we can see that 

(3 × 3) is 9 (a positive number) and {(−3) × (−3)} is again 

9, another positive number. From this, we can understand that 

no matter where we start on the real number line, we would 

always end up turning 180˚ back into the positive side of the 

number line: 

 

 

 
Fig 3 

 

 

 

 
Fig 4 

 

Therefore, what we need is a number, to which when 

multiplied by itself, would turn 90˚ not 180˚. This is what 

imaginary numbers do. Therefore, from this, we can create the 

complex number line, where imaginary number is at a right 

angle to our number line. When we raise a real numbers to a 

power, they get bigger and bigger as they naturally should. 

Nevertheless, when we raise i to a higher power, the number 

does not increase. Instead, it creates a pattern after every 4 

multiplications:  

 

𝑖 1 =  𝑖 𝑖2  =  −1 𝑖3  =  −𝑖 𝑖4  = 1 

𝑖5  =  𝑖 𝑖6  =  −1 𝑖7  =  −𝑖 𝑖8  = 1 

(9) 

 

So when we take 1, as an example, and multiply it by i, we get 

i, and when we multiple i with i again, we get -1. This is the 

90˚ rotation we were looking for. When we keep multiplying 

with i, we keep rotating around the plane and getting the same 

numbers every 4 multiplication. So we cannot say that 

imaginary numbers are apart from our number line or just a 

random hack, they are in fact an extension to our number line 
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but can be seen when we look at numbers from 2 dimensions. 

Sometimes, it is not obvious that we are missing a set of 

number.  

We can figure if we are by using the mathematical idea of 

closure. What we need to do is to find out under which 

operations different sets of numbers close under, and if a set 

results to another number, which is not, included in our set, 

that is when we need to add another part of numbers to math. 

 

 

 
Fig 5  

 

CONCLUSION 

A real number is a value that represents a quantity along a 

continuous number line. Real numbers can be ordered. The 

symbol for the set of real numbers is script R. The real numbers 

include: counting natural numbers 𝑁 = {1, 2, 3, . . . }, Whole 

numbers {0, 1, 2, 3, . . . }, Integers𝑍 = {. . . , −3, −2, −1, 0, 1, 2, 3, . . . }, 

Rational numbers such as 𝑄 =  (−½ , 6.25, 0.625̅̅̅̅  , √3) and 

Irrational numbers such as { 0.121221222 … , √3, 𝜋 }. The basic 

properties of real numbers are used to determine the order in 

which we can simplify mathematics expressions. There are 

four mathematical properties, which involve addition. The 

properties are the commutative, associative, additive identity 

and distributive properties. Real numbers are closed under 

addition, subtraction, and multiplication. The commutative 

property says that the positions of the numbers in a 

mathematical equation do not affect the ultimate solution. Five 

plus three is the same as three plus five. This applies to 

addition, regardless of how many numbers you add together. 

The commutative property allows you to add a large group of 

numbers together in any order.  

The commutative property does not apply to subtraction. Five 

minus three is not the same as three minus five. If we try 

subtraction for natural numbers, we can see that for some 

natural numbers (such as 6 − 4 = 2) we get a natural number 

as an answer, but for ex. 4-6, we will not end up with a natural 

number anymore. We do not have any negative numbers or 

zero in outer set. Therefore, we need to expand out number set 

to include negative numbers and zero. These are called 

integers. After we expanded our number set to include 

integers, we could see that although natural numbers are not 

closed under subtraction, integers are (since subtracting any 

integer from the other will result to another integer).  

As we use more mathematical operations, we have to expand 

our number set even more in order to include answers for these 

operations. As we bring division, we learn to include fractions 

in our number set.  

That is when rational numbers come in. From this, we can say 

that all integers are rational numbers but not all rational 

numbers are integers. Now we can see that rational numbers 

are closed under addition, subtraction, multiplication and 

division. However, not under root or power since sometimes 

raising a rational number to a power will not result in another 

rational number. It turns out that √2 is not resulting in a 

rational number since there are no two EXACT numbers that 

when multiplied together result in 2. Moreover, because of 

this, we give the name “irrational” to these numbers. There is 

even another group of numbers that are named Transcendental 

(which are like 𝑒 or π...).  

Therefore, as we include irrational numbers, we now have 

what we call real numbers. After including all these different 

types of numbers, do we still result in a real number when we 

square another real number? Well, despite all these extensions, 

we might still have something missing from our number set. 

As an example, the square root of -9 has no solution and 

because of that problem, we have to expand our number 

system even more to include imaginary numbers (√−9 = 3𝑖). 
Taking all our numbers, from real to imaginary, we finally 

reach to what we call complex numbers. Despite this, some 

mathematicians say that even complex numbers are not 

sufficient and that problems like √−𝑖 will not result in a 

complex number. However, that turned out to not be the case. 

We can in fact evaluate the square root of –i using the complex 

plane. “Since – 𝑖 has a magnitude of 1 at an angle of -90 

degrees; we just need a number with a magnitude of 1 at an 

angle of -45 degrees. According to our unit circle,  

 

(
√2 

2
 ) −  (

√2 

2
 )  𝑖         (10) 

 

Therefore, the square root of -1 is just another complex 

number. In fact, there is no operation that the complex 

numbers cannot handle. 

 
Table 1 

Numbers Symbol Examples Closed under 

Natural ℕ 1, 2, 3, 4, … +, × 

Integers 𝕫 -2, -1, 0, 1, … +, −, × 

Rational ℚ 1/2, 0.7, 2, … +, −, ×, ÷ 

Real ℝ -1/2, π, √2, 1, … +, −, ×, ÷ 

Complex ℂ 1+2i, 2i, 2… +, −, ×, ÷, √, () 2 

 

In conclusion, we can understand that by expanding our 

number system we can easily solve many mathematical 

equations and problems and although many problems might 

seem like you hit a dead end, there’s always a way to solve 

them. We just have to learn to accept some “impossible 

numbers” because they make algebra complete.  

Without imaginary numbers, we would have still been stuck 

on Cardan’s problem for who knows how many years. We also 

understood that by having a new perspective on math and 

numbers in general, we are able to do almost anything. 
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