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ABSTRACT  
 

A new relativistic theory of the classical motion of a charged particle in an electric field has been developed. The resulting 

equations characterize the kinematic and dynamic features of particle motion, demonstrating peculiar behavior in areas with high 

attractive potentials. This changes the existing paradigm for the interaction of charge with an electric field, entailing profound 

consequences. The new theory converges with the conventional theory of electricity under conditions of low potentials and 

nonrelativistic particle velocities. The possibility of experimental verification of the new theory is discussed. 
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INTRODUCTION 

The specific equations and interactions Dirac envisioned were 

not explicitly stated in this quote, and they could have 

pertained to his broader quest for a more fundamental theory 

in physics.  

In this context, the new theory of electric interactions 

presented in our manuscript, which overcomes some problems 

in conventional electricity theory can be considered an 

example that we believe aligns with the spirit of such 

explorations. 

We develop a new classical relativistic theory of electric 

interactions (NTE), to describe the motion of charged particles 

in an electric field. The theory is grounded in the equations of 

a scalar theory of gravity, explored in (Andersen & von 

Baeyer, 1971; Bergmann, 1956).  

Subsequent investigations (Bragança & Lemos, 2018; 

Dowker, 1965; Lindén, 1972; Sexl, 1967; Shapiro & 

Teukolsky, 1993; Wellner & Sandri, 1964) have delved into 

the modification and analysis of the properties of scalar 

theories. However, scalar theories have not emerged as a 

viable alternative to the general theory of relativity due to its 

inability to account for space-time curvature. In this regard, we 

explore the applicability of the equations of the scalar theory 

of gravity in the realm of electricity theory, where space-time 

curvature is not taken into account. 

NTE must solve the problems faced by the conventional theory 

of electricity, which arise when describing the behavior of 

https://doi.org/10.14331/ijfps.2024.330163
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relativistic charged particle in regions with high potentials 

exceeding 𝑚𝑐2/𝑒 (= 0.51 MV for electron).  

One of the problems is that under such a high attractive 

potential the traditional equations permit the kinetic energy of 

a particle to surpass its total energy, resulting in 

inconsistencies with the law of energy conservation. This 

problem becomes apparent in scenario such as the “electron 

falling onto a nucleus at 𝑍 > 137” problem. (Pomeranchuk & 

Smorodinsky, 1945; Rafelski, Fulcher, & Klein, 1978; 

Zeldovich & Popov, 1972).  

At the atomic scale, this problem is somehow solved by the 

many-particle concept, which involves the creation of particle-

antiparticle pairs in the strong electric field of the nucleus. 

However, it remains unresolved at the macroscales, where the 

electric field of charged bodies (which plays the role of nuclei) 

is many orders of magnitude smaller than the field required for 

pair production. 

Indeed, let us consider the radial motion of a particle with a 

negative charge e toward a positively charged sphere having 

charge 𝑞. Initially, the particle is at a distance 𝑟 from the center 

of the sphere, having potential energy −𝑒𝑞/𝑟, kinetic energy 

𝐾, and total energy (including rest energy 𝑚𝑐2) equal to 𝐸 =
𝐾 − 𝑒𝑞/𝑟 +𝑚𝑐2.  

When approaching the sphere, the kinetic energy increases, 

and the potential energy decreases so that their sum – the total 

energy of the particle-remains constant. At a distance 𝑟 =
𝑒𝑞/𝑚𝑐2, where the potential energy is −𝑚𝑐2 and the electric 

field is 𝑚𝑐2/𝑞𝑟, the kinetic energy is equal to the total energy 

and then exceeds it at closer distances. This field mc2/qr is 

negligibly smaller than the field 𝑚𝑐2/𝑞ƛ𝑐 required for pair 

production (Schwinger, 1951) (ƛ𝑐 is the Compton 

wavelength); therefore, a many-particle model of pair 

production is not applicable here. 

Another example involves a particle penetrating a region 

characterized by a high repulsive potential, referred to as a 

potential barrier, where its potential energy significantly 

exceeds its initial total energy (𝑒𝛷 ≫ 𝐸).  

This scenario represents a quantum mechanical process where 

the particle's kinetic energy and momentum assume imaginary 

values, rendering classical motion within the barrier region 

impossible. However, the conventional relationship between 

total energy and momentum (Equation 4) allows for such 

classical motion (as it yields a real value for the particle's 

momentum at 𝑒𝛷 ≫ 𝐸), thus leading to a contradiction with 

the law of energy conservation. 

It is unsatisfactory also that in conventional theory the 

relativistic Lagrangian 𝐿, unlike to non-relativistic case is not 

expressed as difference of kinetic 𝐾 and potential 𝑊 energies. 

It is represented as 𝐿 = – (𝑚𝑐2)/𝛾 −𝑊 (Landau, 2013) (𝛾 is 

Lorentz factor), which by adding constant term mc2 becomes 

𝐿 =  𝐾/𝛾 −𝑊. Thus, instead of the kinetic energy 𝐾, there is 

an incomprehensible term 𝐾/𝛾, which does not correspond the 

meaning of the Lagrange formalism. 

Looking ahead, it should be noted that NTE effectively solves 

these problems. The contradiction in the first example is 

resolved by the fact that the kinetic energy of a particle in the 

NTE according to (19) has a maximum possible value equal to 

half the total energy.  

Consequently, it is impossible for the kinetic energy to surpass 

the total energy in any circumstance. Regarding the second 

example, the absence of contradiction is attributed to relation 

(3), affirming that at 𝑒𝛷 ≫ 𝐸, the particle momentum assumes 

imaginary values. This excludes the possibility of classical 

motion of a particle in the barrier region. Regarding the 

Lagrange formalism: in NTE the usual equation 𝐿 = 𝐾 −𝑊 is 

valid in both the non-relativistic and relativistic cases. 

Naturally, along with NTE, a new theory of magnetic 

interactions (NTM) must be developed; together they will 

form a general new theory of electromagnetic interactions 

(NTEM).  

The foundations of this general theory were laid and studied 

by 𝑉. Mekhitarian in pioneering works (V. J. J. o. C. P. 

Mekhitarian, 2012, 2018; V. J. Q. M. L. I. Mekhitarian, 2020), 

where electric and magnetic interactions were considered 

using both classical and quantum descriptions. However, at 

present, NTEM is still in its infancy and requires intensive 

development. In this manuscript, we develop NTE. This 

requires the formulation of appropriate modifications and 

additions to the existing equations describing the electric field 

and its interaction with charged particles. 

The foundational hypothesis of the NTEM, introduced in (V. 

J. J. o. C. P. Mekhitarian, 2018; V. J. Q. M. L. I. Mekhitarian, 

2020) posits that the electromagnetic scalar and vector 

potentials acting a moving particle are Lorentz transformations 

of the potentials acting on a motionless particle at the same 

location. The exploration of this hypothesis for electric 

potential leads to equations, coinciding with those of scalar 

theory of gravity (Andersen & von Baeyer, 1971; Bergmann, 

1956).  

These equations describe the interaction of a charged particle 

with an electric field, noticeably different from the usual 

interaction. NTE differs from conventional theory at high 

potentials, comparable to or exceeding mc²/e. At low 

potentials and non-relativistic velocities, NTE seamlessly 

transitions into conventional theory. This article delves into the 

detailed examination of the NTE. 

 
GENERAL EQUATIONS 

The total energy E and generalized momentum P of a charged 

particle in an electromagnetic field in the traditional theory of 

electromagnetism are determined by the expressions, 

 

𝐸 = 𝑚𝑐2𝛾 + 𝑒𝛷   𝑃 = 𝑚𝑐𝛾𝛽 +
𝑒

𝑐
𝐴    (1) 

 

Here the symbols  and A denote, respectively, the electric 

scalar and magnetic vector potentials acting on the particle; 𝑚 

and 𝑒 are the mass and charge of the particle, 𝜷 = 𝑣/𝑐 , 𝛾 =

1/(1 − 𝛽2)1/2 is Lorentz factor. 

As can be seen from these equations, the action of potentials 

on a particle does not depend on whether the particle is moving 

or at rest. However, according to the NTEM, it is presumed 

that this action depends on the particle speed (V. J. J. o. C. P. 

Mekhitarian, 2012, 2018; V. J. Q. M. L. I. Mekhitarian, 2020) 

so that instead of 𝜙 and 𝑨 in equations (1), it is necessary to 

use their Lorentz transformations ' and A', given by the well-

known formulas 

 

𝛷′ = 𝛾(𝛷 + 𝛽𝐴)          A′ = 𝛾(𝐴∥ + 𝛽𝛷) + 𝐴⊥   (2) 

 

where A|| and A┴  are respectively parallel and perpendicular 

to the velocity components of the vector potential.  

As a result, the NTE equations for the total energy and 

generalized momentum of a particle in an electrostatic scalar 
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potential 𝜙 have the form (Andersen & von Baeyer, 1971; 

Bergmann, 1956; Pomeranchuk & Smorodinsky, 1945; 

Rafelski et al., 1978; Zeldovich & Popov, 1972). 

 

𝐸 = 𝑚𝑐2𝛾 + 𝑒𝛷𝛾  𝑃 =
𝛽

𝑐
𝐸     (3) 

 

Equations (2) determine the components of the electron 4-

momentum 𝑃𝑖 = (𝐸/𝑐, 𝑷), the squared modulus of which is 

 

|𝑃𝑖|
2
= (

𝐸

𝑐
)
2

− 𝑃2 = (𝑚𝑐 +
𝑒𝛷

𝑐
)
2

     (4) 

 

This equation describes the relationship between energy and 

momentum in the NTE. It significantly differs from the 

corresponding well-known conventional relationship (V. J. Q. 

M. L. I. Mekhitarian, 2020). 

 

(
𝐸−е𝛷

𝑐
)
2

− 𝑃2 = (𝑚𝑐)2       (5) 

 

Equation (3), together with the expression of momentum in 

(2), leads to the following equation for the particle velocity in 

NTE: 

𝛽2 =
1

𝐸2
[𝐸2 − (𝑚𝑐2 + 𝑒𝛷)2]      (6) 

 

From here the general equation for the one-dimensional 

motion of a particle in an electrostatic scalar potential 𝜙 is 

written as: 

 

𝑡(𝑟) = ±
𝐸

𝑐
∫

𝑑𝑟

√𝐸2−(𝑚𝑐2+𝑒𝛷)2
+ 𝑐𝑜𝑛𝑠𝑡    (7) 

 

 

RADIAL MOTION IN THE COULOMB ATTRACTING 

POTENTIAL 

To clarify the consequences of the new equations, consider the 

one-dimensional radial motion of a negatively charged particle 

in the Coulomb attractive potential 𝜙(𝑟) = – 𝑞/𝑟, where 𝑞 >
0 is the positive charge of the center. A brief analysis of this 

problem is presented in (Karapetyan, 2022).  

Substituting the potential 𝜙(𝑟) = – 𝑞/𝑟 into (6), we obtain the 

following equation relating the radial distance 𝑟 with time 𝑡. 
 

 

𝑡(𝑟) = ±
𝜀

𝑐
∫

𝑑𝑟

√𝜀2 − (1 −
𝑟𝑐

𝑟
)
2

𝑟

𝑟0

 

(8) 

 

Here, 𝜀 = 𝐸/𝑚𝑐², 𝑟𝑐 = |𝑒|𝑞/𝑚𝑐², 𝑒 is the charge of the 

particle, and 𝑟0 is the initial distance of the particle from the 

center at 𝑡 = 0. The parameter 𝑟𝑐  plays an important role in the 

NTE and is called the critical radius. The roots of the 

denominator in (7) determine the boundaries of accessible 

intervals of electron motion, where radical is real. There are 

two roots, 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 for 𝜀 < 1,, and one root, 𝑟𝑚𝑖𝑛 for 𝜀 >
1, which are determined by the formulas. 

 

𝑟
𝑟𝑐

1+𝜀
                     

𝑟𝑐

1−𝜀𝑚𝑎𝑥𝑚𝑖𝑛
     (9) 

 

For 𝜀 < 1, the electron moves in the interval 𝑟𝑚𝑖𝑛 < 𝑟 < 𝑟𝑚𝑎𝑥 , 

and for 𝜀 > 1, in the interval 𝑟 > 𝑟𝑚𝑖𝑛. It is convenient to 

calculate the integral in (7) assuming that initially, the electron 

is at a minimum distance from the center, i.e. 𝑟0 = 𝑟𝑚𝑖𝑛. Then, 

a positive sign is taken in (7), and the result is the following 

equation for the radial motion, 

 

𝑡(𝑟) =
𝑟𝑐𝜀

𝑐(1 − 𝜀2)
[√(

𝜀𝑟

𝑟𝑐
)
2

− (1 −
𝑟

𝑟𝑐
)
2

−
1

√1 − 𝜀2
𝑎𝑟𝑐𝑐𝑜𝑠

1 − (1 − 𝜀2)𝑟/𝑟𝑐
𝜀

] 

  

(10) 

 

For 𝜀 < 1, this equation describes the motion as follows (see 

Fig. 1): The particle, moving toward the center, crosses the 

critical radius 𝑟𝑐  and begins to slow down. At the distance 𝑟𝑚𝑖𝑛  

it stops and starts moving in the opposite direction.  

At a distance 𝑟𝑚𝑎𝑥, it stops again and moves back toward the 

center. Thus, for 𝜀 < 1, the particle performs radial 

oscillations, which at small energies (𝜀 ≪ 1) are close to 

sinusoidal oscillations (green curve). As ε approaches unity, 

the amplitude of oscillations increases, and the particle 

approaches closer to the center (as indicated by the blue curve). 

At 𝜀 > 1, the particle is not confined within a finite interval 

and moves to infinity under any initial conditions.  

For example, if a particle with 𝜀 > 1 moves toward the center, 

then it slows down when crossing the critical radius, bounces 

back, reaching the distance 𝑟𝑚𝑖𝑛, and finally goes to infinity 

(red curve). The larger the energy, the closer the particle 

approaches the center and then goes to infinity. However, at 

no energy can the particle reach the center.  

This indicates the absence of a physical singularity for a point 

charge, despite the mathematical singularity of its potential 

1/𝑟. 

 

 
 

Fig. 1 Trajectories of radial oscillations of a particle at 

different energies. 𝜀 = 0.8 (blue curve), 𝜀 = 0.3 (green curve) 

and 𝜀 = 1.1 (red curve). The dashed black curve was 

computed by the equations of conventional theory. It shows 

the trajectory of a particle, initially at rest at 𝑡 = 0, which 

begins to move towards the center from a distance of 5𝑟𝑐. The 

timeline is arbitrarily adjusted for easy viewing. 
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From eq (7) it is seen that the denominator in the integrand 

equals  on the critical radius (at 𝑟 = 𝑟𝑐), which leads to 

particle velocity 𝑣 = 𝑑𝑟/𝑑𝑡 to equal speed of light 𝑐, on the 

critical radius 𝑟𝑐  and consequently to the divergence of Lorentz 

factor 𝛾 there. This problem arises from the presentation of a 

particle as a point charge. However, this divergence is not 

essential, and it eliminates when considering a small size of a 

particle.  

Then the denominator in (7) becomes somewhat less than  at 

the critical radius, which leads to a value of the velocity less 

than c and a finite value of the Lorentz factor at the critical 

radius. The smaller the assumed size of the particle, the closer 

the particle speed to 𝑐 at the critical radius and the greater the 

Lorentz factor there. However, it does not lead to any 

contradictions with the observable characteristic of the 

particle-its kinetic energy.  

As will be shown below, the kinetic energy of a particle is a 

finite continuous function of coordinate, having the value 𝐸/2 

at the critical radius, regardless of the assumed negligible 

small size of the particle. 

The critical radius defines the boundary separating two 

regions: the region where 𝑚𝑐2 + 𝑒    which we call the 

anomalous region, and the region where 𝑚𝑐2 + 𝑒 > , 

called the normal region. For the Coulomb central field, these 

regions are 𝑟 < 𝑟𝑐  and 𝑟 > 𝑟𝑐, respectively, and the boundary 

separating them is the sphere 𝑟 = 𝑟𝑐 . 

When a particle crosses this boundary, the quantity 𝑚𝑐2 +
𝑒 changes sign. Since the total energy of the particle 

(equation 2) is conserved throughout the motion, it follows that 

the Lorentz factor must also change sign when crossing the 

boundary. Consequently, the Lorentz factor in the NTE is 

defined as 

 

𝛾 =

{
 
 

 
 

1

√1 − 𝛽2
   in the normal region (where 𝑚𝑐2 + 𝑒𝛷 > 0)

−
1

√1 − 𝛽2
 in anomalous region (where 𝑚𝑐2 + 𝑒𝛷 < 0)

 

(11) 

 

and the total energy is always positive. The cause of radial 

oscillations is the repulsive force acting on the particle in the 

anomalous region (at 𝑟 < 𝑟𝑐). Differentiating equation (3) with 

respect to time and using (2), we obtain the following 

expression for the force 𝑓(𝑟) acting on a moving particle 

 

 

𝑓(𝑟) = (
𝑑𝑃

𝑑𝑡
) = −(

𝑚𝑐2

𝐸
)
𝑑

𝑑𝑟
[𝑒𝛷 +

(𝑒𝛷)2

2𝑚𝑐2
]

=
1

𝜀
(−

𝑒𝑞

𝑟2
+
𝑒𝑞𝑟𝑐
𝑟3

) 

(12) 

 

From this equation, it is seen that the force (11) consists of two 

components, which depend differently on the distance to the 

center and are directed differently.  

The first force is inversely proportional to the square of the 

distance; it is negative, i.e., attractive. The second force is 

inversely proportional to the cube of the distance and, being 

positive, is repulsive.  

These two forces have similar magnitudes near the critical 

radius and balance each other at the critical radius (at 𝑟 = 𝑟𝑐). 

In total, the force 𝑓(𝑟) is negative, i.e., attractive, in the normal 

region (𝑟 > 𝑟𝑐) and positive, i.e., repulsive, in the anomalous 

region (𝑟 < 𝑟𝑐). As a result, unusual dynamics of particle 

motion appear in and around the anomalous region. Note the 

formal similarity of (11) with the force of interatomic 

interaction in diatomic molecules (Kratzer, 1920; Macke, 

1959). 

We call the force 𝑓(𝑟) the “dynamic force” because it acts on 

a moving particle. Like the potential acting on a moving 

particle, the dynamic force also depends on the particle speed, 

although this dependence is not clearly visible in equation 

(11). Indeed, for a given energy , there is a single value of 

velocity for each r in equation (11), indicating that the dynamic 

force 𝑓(𝑟) = 𝑓(𝑟()) is a single-valued function of velocity.  

The dynamic force should be distinguished from the static 

force 𝐹(𝑟) acting on a motionless particle.  

The static force acts on the particle at the boundaries of the 

interval of radial oscillations 𝑟𝑚𝑖𝑛  and 𝑟𝑚𝑎𝑥, where the speed 

of the particle is zero; therefore, 𝐹(𝑟𝑚𝑖𝑛) = 𝑓(𝑟𝑚𝑖𝑛) and 

𝐹(𝑟𝑚𝑎𝑥)  =  𝑓(𝑟𝑚𝑎𝑥). Taking this circumstance into account, 

the general equation for the static force 𝐹(𝑟) is derived from 

eqs (11), and (8) and has the form 

 

𝐹(𝑟) = {
−
𝑒𝑞

𝑟2
        if        𝑟 >

𝑒𝑞

𝑚𝑐2

   
𝑒𝑞

𝑟2
         if        𝑟 <

𝑒𝑞

𝑚𝑐2

 

(13) 

 

The obtained formula describes the force, acting on a 

motionless particle in the attractive central Coulomb potential. 

The magnitude of the force (12) everywhere coincides with the 

Coulomb force, but in the anomalous region 𝑟 < 𝑟𝑐  the force 

(12) acts in the opposite direction. At point 𝑟𝑐 , the static force 

(12) is undefined, having a discontinuity of the first kind.  

This occurs because the particle is represented as a point 

charge. For an assumed small particle size , the values of the 

force 𝐹(𝑟) are equal to −𝑒𝑞/𝑟2 for 𝑟 = 𝑟𝑐 +   and 𝑒𝑞/𝑟2 for 

𝑟 = 𝑟𝑐 − .  

By combining these values, we can represent the force 𝐹(𝑟) as 

a continuous function, varying in the vicinity of 𝑟𝑐  from 

𝐹(𝑟) = – 𝑒𝑞/𝑟2 at 𝑟 = 𝑟𝑐 +  to 𝐹(𝑟) = 𝑒𝑞/𝑟2 at 𝑟 = 𝑟𝑐 −  .  

Figure 2 shows graphs of the dynamic and static forces plotted 

using equations (11) and (12). 
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Fig. 2. The left panel shows the dynamic force f(r), and the right panel shows the static force F(r), calculated using formulas (11) 

and (12). Both forces are attractive (negative) at 𝑟 > 𝑟𝑐 , and repulsive (positive) at 𝑟 < 𝑟𝑐 . The dashed lines show the Coulomb 

force – 𝑒𝑞/𝑟2. 𝜀 = 0.3, 𝑟𝑐 = 10 𝑐𝑚. 

 

 

Let us now consider the energetic characteristics. The potential 

energy of a motionless particle, denoted as 𝑊(𝑟), can be 

determined by taking into account that at the boundaries of the 

motion interval 𝑟𝑚𝑖𝑛 and 𝑟𝑚𝑎𝑥 the particle velocity is zero. 

Therefore, the potential energy at these points is equal to the 

total energy minus the rest energy. Using the formula  =
𝑟𝑐/𝑟𝑚𝑖𝑛 − 1 from (8), we obtain the following equation for the 

potential energy of a motionless particle in the anomalous 

region 𝑟 < 𝑟𝑐: 

 

𝑊(𝑟) = 𝑚𝑐2
𝑟𝑐
𝑟
=
𝑒𝑞

𝑟
          at 𝑟 < 𝑟𝑐  

(14) 

 

This formula can also be obtained by integrating the static 

force (12) over the coordinate. 

Similarly, using   = 1 − 𝑟𝑐/𝑟𝑚𝑎𝑥 from equation (8), one can 

obtain the potential energy in the normal region 𝑟 > 𝑟𝑐 . Thus, 

the general formula for the potential energy of a motionless 

particle is, 

 

𝑊(𝑟) = {
−
𝑒𝑞

𝑟
                at 𝑟 >

𝑒𝑞

𝑚𝑐2
𝑒𝑞

𝑟
− 2𝑚𝑐2       at 𝑟 <

𝑒𝑞

𝑚𝑐2

 

(15) 

 

This formula significantly differs from the well-known 

Coulomb potential energy formula 

 

𝑊(𝑟) = −
𝑒𝑞

𝑟
       (16) 

 

which implies that potential energy can have arbitrarily large 

negative values at small distances from the attracting center. 

In contrast, the new formula (14) shows that the minimum 

potential energy of a motionless particle is –𝑚𝑐2, which is 

achieved at a distance 𝑒𝑞/𝑚𝑐2 from the attracting center. At 

smaller distances, the potential energy increases rather than 

decreases (see Fig. 3). 

Let us now calculate the potential energy of a moving particle, 

denoted 𝑉(𝑟). By integrating the dynamic force (11) over the 

coordinate, we can represent the potential energy of a moving 

particle as 

 

𝑉(𝑟) =
𝑚𝑐2

𝐸
(𝑒𝛷 +

𝑒2𝛷2

2𝑚𝑐2
) + 𝑐𝑜𝑛𝑠𝑡 

(17) 

 

This unusual expression for the potential energy of a moving 

particle includes a positive quadratic term, which is significant 

at high potentials and is responsible for the repulsive force in 

attractive potentials.  

The unknown constant is found from the condition that the 

potential energy is equal to 𝐸/2 at the boundary between the 

normal and anomalous regions (i.e., at 𝑒 = −𝑚𝑐2). Taking 

this into account, the following expression for const is 

obtained as 

𝑐𝑜𝑛𝑠𝑡 =
(𝐸−𝑚𝑐2)

2

2𝐸
      (18) 

 

Therefore, the general equation of the potential energy of a 

moving particle is determined by eqs (16), and (17). In the 

Coulomb attracting central potential, the potential energy of 

the particle is 

 

𝑉(𝑟) =
𝑚𝑐2

𝐸
(−

𝑒𝑞

𝑟
+

𝑒2𝑞2

2𝑚𝑐2𝑟2
) +

(𝐸 −𝑚𝑐2)2

2𝐸
 

(19) 

 

At the critical radius 𝑟 = 𝑟𝑐 , the potential energy reaches its 

minimum value  𝑉(𝑟𝑐) = 𝐸/2–𝑚𝑐
2. It is important to note 

that the potential energy (17) tends to zero at infinity, 

coinciding with the conventional expression (15) only at 

energy 𝐸 = 𝑚𝑐2, because only at this energy does the particle 

achieve zero speed at infinity.  

If the particle energy 𝐸 exceeds 𝑚𝑐2, then the speed of the 

particle, moving to infinity does not tend to zero. 

Consequently, its potential energy at infinity, which depends 

on the speed, also does not tend to zero, which is reflected in 

(17). Subtracting the potential energy and rest energy from the 
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total energy, we obtain the kinetic energy 𝐾(𝑟) as a function 

of the coordinate 

 

𝐾(𝑟) = −
𝑚𝑐2

𝐸
(−

𝑒𝑞

𝑟
+

𝑒2𝑞2

2𝑚𝑐2𝑟2
) +

𝐸2 − (𝑚𝑐2)2

2𝐸
 

(20) 

 

Kinetic energy, like potential energy, is a continuous finite 

function that reaches its maximum value 𝐸/2 at the critical 

radius 𝑟 = 𝑟𝑐. Using equation (5), we can transform eq (18) 

and represent the kinetic energy of a particle as a function of 

its speed 

 

𝐾 =
𝐸𝛽2

2
        (21) 

 

This nice formula shows that the kinetic energy is always less 

than half the total energy. This important circumstance 

resolves the paradox of excess of kinetic energy over total 

energy in conventional theory, as discussed in the 

Introduction. In the absence of potential, the kinetic energy of 

a free particle is equal to 

 

𝐾 =
𝑚𝑐2𝛾𝛽2

2
        (22) 

 

which in ultra-relativistic limit tends to half the total energy 

(the other half is provided by potential energy).  

At 𝛽 ≪ 1 the kinetic energy tends to the usual non-relativistic 

expression ~ 𝑚𝑐2𝛽2/2. Figure 3 shows graphs of the potential 

and kinetic energies calculated using equations (17) and (18), 

 

 

  
Fig. 3. Left panel: potential energy of a motionless particle 𝑊, calculated using formula (14). Minimum value of 𝑊 is –𝑚𝑐2 =
–0.51 𝑀𝑒𝑉. Right panel: potential energy 𝑉 (blue curve) and kinetic energy 𝐾 (red curve) of a moving particle, calculated using 

the formulas (17) and (18). Minimum value of 𝑉 is  𝐸/2–  𝑚𝑐2 – 0.43 𝑀𝑒𝑉, maximum value of kinetic energy is 𝐸/2 =
0.75 𝑀𝑒𝑉. The dotted lines show the Coulomb potential energy (15). E/mc2 = 0.3, 𝑟𝑐 = 10 𝑐𝑚. 

 

 

 

CONCLUSIONS 

In this paper, we have introduced a new relativistic theory 

aimed at describing the behavior of charged particles in 

electric fields. By presenting novel equations governing 

particle kinematics and dynamics, we have provided insights 

into particle behavior in regions characterized by high 

potentials. The results obtained challenge and extend our 

current understanding of electrical interactions.  

The resolution of certain difficulties encountered in 

conventional theory, as discussed in the Introduction, suggests 

the potential validity of our theory. However, the ultimate 

determination of the correctness of the NTE can only be 

achieved through experimentation. Laboratory experiments 

involving electrons pose no fundamental obstacles and can be 

conducted on a macroscopic scale at potentials of 

approximately megavolts. For instance, considering a 

conducting sphere with radius R and potential 𝑈, the critical 

radius 𝑟𝑐 = 𝑒𝑈𝑅/𝑚𝑐2  is 𝑟𝑐/𝑅 = U/0.51 (with 𝑈 measured in 

MV).  

Thus, the anomalous region (and the associated repulsive 

force) around the sphere arises when the sphere's potential 

exceeds 0.51 MV. Conversely, when the potential drops below 

0.51 MV, the critical radius 𝑟𝑐  becomes smaller than the 

sphere's radius 𝑅, and the anomalous region and repulsive 

force disappear.  

Hence, at 𝑈 > 0.51𝑀𝑉, a beam of electrons directed towards 

a positively charged sphere may repel and deflect without 

reaching the sphere (see Fig.4). The observation of such 

behavior would validate the existence of the repulsive force 

and the correctness of the NTE.
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(a) (b) 

 

Fig.4. Sketch of an experimental setup for detecting repulsive force. 

 

 

Solid circles represent a conducting sphere, charged to 

potential 0.4 MV in the left panel and to potential 1 MV in the 

right panel, dotted lines show a spherical surface with a radius 

equal to critical radius 𝑟𝑐 . The electrons are emitted by an 

electron gun (shown by solid rectangle). 

Blue lines show electron trajectories. In the left panel (a) the 

critical radius is less than the radius of the sphere and so has 

no any physical meaning. The electrons experience attracting 

force and fall towards the sphere. In the right panel (b) the 

critical radius is greater than the radius of the sphere. It defines 

a spherical surface (𝑟 = 𝑟𝑐), which is the boundary between 

the normal (𝑟 > 𝑟𝑐) and anomalous (𝑟 < 𝑟𝑐) regions. The 

electrons experience a repulsing force in anomalous region and 

are deflected away from the sphere. It is important to note that, 

like the traditional theory of electricity, our theory does not 

account for particle spin. Therefore, the NTE assumes spinless 

particles and cannot formally be applied to electrons. 

However, the issue of the applicability of the NTE to electrons 

cannot be definitively resolved a priori and necessitates 

experimental validation. Consequently, experimental studies 

are essential to confirm the NTE's validity for both spinless 

particles and electrons. In the event that experiments with 

electrons do not corroborate the NTE, subsequent experiments 

involving spinless particles, such as alpha particles, will be 

required. Conducting macroscopic experiments of this nature 

presents significant challenges, as the critical radii when using 

alpha particles will be approximately 7200 times (which is the 

ratio of alpha particle and electron rest masses) smaller than 

when using electrons.
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