
 

ISSN: 2231-8186/  ©2022 Published by Int. J. Fundam. Phys. Sci 

https://doi.org/10.14331/ijfps.2022.330153 

 

29 

 

z  

    
  Fundamenta l  Journa ls  

  International Journal of Fundamental Physical Sciences (IJFPS)  
 

Original Research Papers 

Open Access Journals 

ISSN: 2231-8186 
 

  

IJFPS, Vol 12, No 3, pp 29-34, Sept, 2022 E. J. Jeong 

https://doi.org/10.14331/ijfps.2022.330153  

  

 

QCD QED Potentials, Quark Confinement 
 
 

Eue Jin Jeong   

 

Tachyonics Institute of Technology Austin TX 78741 USA  

 

euejinjeong@utexas.edu  

 

Received July 2022 

Received in revised: Agu 2022 

Published: Sep 2022 

 

ABSTRACT  
 

One of the enduring puzzles in high energy particle physics is why quarks do not exist independently despite their existence 

inside the hadron as quarks have never been found in isolation. This problem may be solved by formulating a QCD potential for 

the entire range of interaction distances of the quarks. The mystery could be related to the fundamental origin of the mass of 

elementary particles despite the success of the quantum field theories to the highest level of accuracy. The renormalization 

program is an essential part of the calculation of the scattering amplitudes, where the infinities of the calculated masses of the 

elementary particles are subtracted for the progressive calculation of the higher-order perturbative terms. The mathematical 

structure of the mass term from quantum field theories expressed in the form of infinities suggests that there may exist a finite 

dynamical mass in the limit when the input mass parameter approaches zero. The Lagrangian recovers symmetry at the same 

time as the input mass becomes zero, whereas the self-energy diagrams acquire a finite dynamical mass in the 4-dimensional 

space when the dimensional regularization method of renormalization is utilized. We report a new finding that using the 

mathematical expression of the self-energy(mass) for photons and gluons calculated from this method, the complex form of the 

QCD and QED interaction potentials can be obtained by replacing the fixed interaction mediating particle’s mass and coupling 

constants in Yukawa potential with the scale-dependent running coupling constant and the corresponding dynamical mass. The 

derived QCD QED potentials predict the behavior of the related elementary particles exactly as verified by experimental 

observation. 
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INTRODUCTION 

The standard Glashow-Weinberg-Salem (Glashow, 1961; A. 

Salam & Ward, 1967; A. J. N. S. Salam, 1968; S. J. P. r. l. 

Weinberg, 1967) model of electroweak interaction has been 

highly successful in predicting the interactions of high-energy 

elementary particles. The discovery (Arnison et al., 1986; UA-

2 Collab., 1983) of the W and Z gauge bosons, and finally the 

discovery of the Higgs boson at CERN in 2012 (D Liko, 2012), 

proved that the standard model is a mathematically correct 

theory describing the interactions of elementary particles. 

However, a consistent interaction potential model has not been 

proposed for QCD and QED. We investigated the structures of 

the self-energy diagrams of the elementary particles to study 

the relationship between the mass and coupling constant in 

quantum field theories and apply them to construct the 

interaction potential model. By using the dimensional 

regularization method for the renormalization of quantum field 

theories, a finite indeterminate mathematical form of the 

dynamical mass of the fields is obtained in the limit of the 

input mass term in the Lagrangian approaches zero in the 

dimensional regularization method.  
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In this process, the symmetry of the original Lagrangian is 

restored, whereas a finite mass appears in the self-energy-loop 

diagrams. The renormalization group equation ('t Hooft, 1993; 

Coleman, 2022; Gell-Mann, Goldberger, & Thirring, 1954; 

Gross et al., 1973; Stückelberg & Petermann, 1953; Symanzik, 

1971; S. J. P. L. B. Weinberg, 1980; K. G. Wilson & Kogut, 

1974; K. G. J. R. o. m. p. Wilson, 1975) resolves the problem 

of arbitrariness of the renormalization prescription. The 

dynamical mass generation mechanism is presented within the 

framework of the dimensional regularization method 

developed by G. 't Hooft and M. Veltman (Veltman, 1972). 

DYNAMICAL MASS FROM THE MASSLESS 

QUANTUM FIELD THEORY 

1-  𝛌𝛗𝟒  Theory 

The mathematical structure of the one loop self-energy 

diagram in λφ4 theory is represented by 

𝑜𝑛𝑒 𝑙𝑜𝑜𝑝 =
𝑚0
2𝜆

16𝜋2
[
1

𝑛−4
+
1

2
𝜓(2) −

1

2
ln

𝑚𝑜
2

4πμ2
+𝛰(𝑛 − 4)] 

 
(1) 

where 𝜓(2) is a constant given in general, 

 

𝜓(𝑛 + 1) = 1 +
1

2
+ .......+

1

𝑛
− 𝛾    (𝛾 = 0.5772....) 

 

and 𝜇 is an arbitrary constant with mass dimensions. 

Renormalization for nonzero bare mass 𝑚0 is necessary 

because the first term is divergent in the 𝑛 → 4 limit. However, 

in the zero bare mass limit 𝑚0 → 0, the term is not infinite but 

becomes undetermined. We introduce a constant 𝐶𝑠, and the 

one-loop diagram becomes 
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𝜆
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(2) 

 

where, 

 

𝐶𝑠 =
𝑙𝑖𝑚

𝑚0 → 0
𝑛 → 4

(
𝑚0
2

𝑛−4
)
 

 

As a result of this operation, we have an analytical mass that 

is not infinity but simply undetermined. Therefore, the 

massless λφ4 scalar field theory begins to have a mass from a 

one-loop self-energy diagram. Recalling that the λφ4massless 

scalar field theory is the simplest case of supersymmetric 

theories, it provides us with a clue to a possible mass-

generation mechanism for supersymmetric particles. The fact 

that the explicit mass parameter in the Lagrangian does not 

represent the real mass of the field and its sole purpose is to 

provide a reference from which the real mass can be 

determined experimentally has already suggested that the mass 

can be generated by dynamical interactions of the interacting 

fields. In the case of QCD and QED, the self-energy was 

calculated without explicit mass parameters in the Lagrangian.  

 

2- QED 

 

The self-energy diagram of the electron in QED (7) without 

the mass parameter in the Lagrangian is given by 

 

∑(𝑝) = (
2

𝑛 − 4
) (

𝑒2

16𝜋2
)𝛲

−
𝑒2

8𝜋2
[
1

2
𝛲(1 + 𝛾)

+ ∫ 𝑑𝑥𝛲(1 − 𝑥)
1

0

𝑙𝑛
𝑝2𝑥(1 − 𝑥)

4𝜋𝜇2
] 

  (3) 

 

where P represents the energy-momentum tensor of the 

electronic quantum field. Because self-energy is defined by the 

energy when the particle is in a rest state, the mass of the 

electron is given by 

 

𝑀𝑒 =
𝑒2

8𝜋2
𝐶𝑒          (4) 

 

so that, 

 

𝐶𝑒 = lim  
𝑝 → 0

𝑛 → 4
 (

det𝛲

𝑛 − 4
) 

 

and the higher-order small correction terms can be included in 

the constant factor 𝐶𝑒, without the loss of generality. The 

vacuum polarization diagram of the photon (7) is given by 

 

𝛱μν(𝑝) =
𝑒2

2𝜋2
(𝛲𝜇𝛲𝜈 − 𝛿μν𝛲

2) (
1

3(𝑛 − 4)
−
1

6
𝛾
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1

0

ln
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+𝑂(𝑛 − 4) 

(5) 

 

The dynamical mass of the photon is now given by 

 

𝑀𝛾
2 =

𝑒2

6𝜋2
𝐶𝛾 

 

where the photon mass constant 

 

𝐶𝛾 = lim
𝑝 → 0

𝑛 → 4
(

det(𝛲𝜇𝛲𝜈 − 𝛿μν𝛲
2)

𝑛 − 4
) 
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Although it is generally known that photons do not carry mass, 

the gauge invariance of the Lagrangian suggests that they 

manifest mass in relation to the distance of their interactions 

with the charged particles. In fact, the self-energies of photons 

and gluons manifest themselves as masses. 

 

3- QCD 

 

Using the same procedure for QCD, the dynamical mass for 

quarks is given by 

 

𝑀𝑓 = 𝐶3
𝑔2

8𝜋2
𝐶𝑓   𝐶𝑓 = lim (

𝑝→0

𝑛→4
) (

det𝛲

𝑛−4
) 

 

(6) 

and 

 

 

{
 
 

 
 𝑀𝑌.𝑀
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5

3
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4

3
𝐶2) (
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(7) 

 

for the self-energy of the gluon from Yang Mill fields. 

 

SELF-ENERGY AND COUPLING CONSTANT IN THE 

QUANTUM FIELDS 

It is well known that the electron mass is related to the 

electrostatic self-energy in classical electrodynamics, where 

the radius 𝑟0 of the electron is defined by 

 

𝑚𝑒 =
𝑒2

𝑟0
              (8) 

 

In fact, the relationship between the mass and the 

corresponding charge of a particle is a universal feature 

beyond classical electrodynamics. The quantum field 

theoretical dynamic mass is directly related to the 

corresponding coupling constants by the following relations, 

as shown in the above examples: 
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5

3
𝐶1 −

4

3
𝐶2) (

𝑔2

8𝜋2
)𝐶𝑌.𝑀 

and from equation (7) we had, 

 

𝐶𝑌.𝑀 = lim (
𝑝 → 0

𝑛 → 4
) (

det(𝛲𝜇𝛲𝜈 − 𝛿μν𝛲
2)

𝑛 − 4
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(7) 

 

where 𝐶1, 𝐶2, and 𝐶3 are constants determined by the group 

structure of the non-Abelian gauge theory, and the sub-indices 

s, e, 𝛾, f, and Y.M indicate the scalar, electron, photon, fermion, 

and Yang-Mills fields, respectively. In the four-dimensional 

space, all constants, including the higher-order correction 

terms for the self-energies, become undetermined in the limit 

of the momentum, and the input mass becomes zero. These 

relations between the mass and coupling constant suggest a 

significant variation in the mass due to the running coupling 

constant that depends on the scale. 

QCD and QED POTENTIALS BY GENERALIZING 

YUKAWA POTENTIAL 

In 1935, Yukawa (6) introduced the nuclear potential, which 

has been proven to be highly successful in addressing many of 

the diverse nuclear interactions. The major property of 

Yukawa's potential is the introduction of the mass of the pion 

as the interaction-mediating particle, which applies for strong 

nuclear force at short distances. The coupling constant and 

mass of the pion in Yukawa's nuclear potential are independent 

fixed parameters regardless of the mutual interaction distance. 

 

𝑉𝑌𝑢𝑘𝑎𝑤𝑎(𝑟) = −𝑔
2 𝑒

−𝛼𝑚𝑟

𝑟
      (9)  

 

where g is the coupling constant, m is the mass of the 

intermediate particle, r is the radial distance between particles, 

and α is a scaling constant. 

1- QCD 

Because we have established the dependence between the 

scale-dependent coupling constant and the self-energy of the 

quantum fields, we propose constructing a new generalized 

Yukawa potential by replacing the fixed mass and coupling 

constant with those that depend on the running coupling 

constant (2) – (7). The generalized Yukawa potential with the 

variable-scale-dependent running coupling constant and the 

corresponding self-energy is given by 

 

𝑉(𝑟) = 𝑔2(𝜇)
𝑒−𝛼𝑚(𝜇)𝑟

𝑟
      (10) 

 

Where 𝑔2(𝜇) is the running coupling constant and m(𝜇) is the 

scale-dependent self-energy (mass) of the interaction-

mediating field in the QFT. For example, photon mass is zero 

in macroscopic scale and Yukawa potential with zero mass 

interaction mediating particle takes the form of Coulomb 

potential. This property of Yukawa potential indicates that the 

fundamental mathematical structure of Yukawa potential is 

much more general than typically known as nuclear potential. 

It has been shown that the coupling constant and mass of the 

fields depends on the scale in quantum field theory. Therefore, 

using the property of the generality of Yukawa potential, it 

must be possible to derive a detailed form of QCD and QED 

potentials that are effective in sub-hadronic scale by utilizing 

the mathematical form of the scale dependent coupling 

constant and the mass of the interaction mediating particles in 



IJFPS, Vol 12, No 2, pp 29-34, Sept, 2022 E. J. Jeong 

 

32 

 

quantum field theories. The scale-dependent running coupling 

constant from QCD is given by 

 

𝑔2(𝜇) =
𝑔0
2

1 + (
𝑔0
2

8𝜋2
) 𝑙𝑛 (

𝜇

𝜇0
)
 

(11) 

 

which was developed by D. Gross, F. Wilzeck, and H. D. 

Politzer (8) (9) and using the scale-dependent self-energy of 

Yang-Mill field (7), the QCD potential is given by 

 

𝑉𝑞𝑐𝑑(𝑟) =

= (
𝑔0
2

1 +
𝑔0
2

8𝜋2
𝑙𝑛

𝜇
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1

𝑟
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(√

𝛼

8𝜋2
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2𝐶𝑔𝐶𝑘

1 +
𝑔0
2

8𝜋2
𝑙𝑛

𝜇

𝜇0

)  𝑟

]
 
 
 

    

 

(12) 

 

where 𝐶𝑔 is the gluon mass constant, which is given by 

𝐶𝑔=5.8 × 10−103𝑔2, and 𝐶𝜅 is a group structure constant of an 

order of magnitude 1 and 𝑔0 = 𝑔(𝜇0). However, the potential 

in the form (12) is impractical because of the parameter 𝜇, 

which depends on the input momentum scale. To translate the 

parameter 𝜇 into distance r, we hypothesize that there is a 

mathematical relationship between 𝜇 and r governed by  

 

𝜇 = 𝜆 exp (
𝜌

𝑟2
)  𝜆, 𝜌 > 0     (13) 

 

where 𝜆 and 𝜌 are the adjustable parameters. The relation (13) 

does not violate the quantum mechanical uncertainty because 

the larger input momentum 𝜇 results in a smaller distance 𝑟 

owing to the quantum uncertainty principle, 

 

𝛥𝑥𝛥𝑝 ≥ ℏ/2      (14) 

 

In fact, the mathematical relation (13) is the only possible 

choice to obtain 1/r dependent Coulomb potential at large 

distances and the QED potential at sub-hadronic distances that 

confirms the phenomenological quarkonia spectroscopy 

results (19). After the transformation of 𝜇 by the relation [13], 

the QCD potential (12) is given by: 

 

𝑉𝑞𝑐𝑑(𝑟) = (
1

𝐴

𝑟2
−𝐵

1

𝑟
) 𝑒𝑥𝑝 (−(

𝛼

8𝜋2
𝐶𝑘𝐶𝑔

𝐴

𝑟2
−𝐵

)

1/2

𝑟)   

 (15) 

 

where 𝐴 =
𝑔0

2𝜌

8𝜋2
, 𝐵 =

ln (
𝜇0
𝜆
)

8𝜋2
−

1

𝑔0
2, where the adjustable 

parameter 𝜆 is set for 𝐵 > 0 and 𝐶𝑔 is the gluon mass constant 

which is given by 𝐶𝑔=5.8 × 10−103𝑔2, and 𝐶𝜅 is a group 

structure constant of the order of magnitude 1.   

At 𝑟 = 𝑟𝑐𝑞 = √𝐴/𝐵, the QCD potential (15) becomes zero due 

to the negative infinite exponential factor and becomes 

imaginary as r increases further. To visualize the general 

structure of the potential, for instance, for A=B=1 and 
𝛼

8𝜋2
𝐶𝜅𝐶𝑔 = 0.05, the QCD potential has the form presented in 

the diagram in Fig. 1, which shows the initial confinement and 

deconfinement by the sharply dropping potential after 

reaching the maximum and the decay phase as the potential 

becomes imaginary below zero level. In quantum mechanics, 

imaginary potential is known to violate the conservation of the 

probability of finding quantum particles.  

The loss of probability beyond the outer radius of the hadronic 

boundary is consistent with the absence of fractionally charged 

isolated particles and also with the spontaneous evaporation 

(11) of the black hole at its surface, assuming that the black 

hole is fundamentally a neutron star with extreme density of 

quark-gluon plasma. For small r and 𝛼 = 1, the QCD potential 

(15) becomes 

 

𝑉𝑞𝑐𝑑(𝑟) = (
𝑟

𝐴
) (1 −

𝐵

𝐴
𝑟2 +⋯…) 

(16) 

 

The quark potential (15) shown in Fig. 1 has the following 

features. 

 

1. linear potential at small distance r  

2. confinement within the hadronic boundary 

3. deconfinement beyond the critical distance of the 

hadronic boundary as the potential drops to zero 

4. decay (disappearance) of quark matter as the potential 

becomes imaginary as the relative distance increases 

beyond the zero-potential level 

5. no singularity throughout the relative distances 

 

 

 
 

Fig. 1 QCD Potential Diagram 

 

2- QED 

By applying the same mathematical procedure using the 

running coupling constant for the QED 

 

𝑒2(𝑄) =
𝑒2

1−(
𝑒2

6𝜋2
) 𝑙𝑛(

𝑄

𝑚𝑒
)
     (17) 
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Where Q is the input momentum scale given by Q=𝜆exp (
𝜌

𝑟2
) 

for the transformation into the length parameter 𝑟, and 𝜆, 𝜌 are 

adjustable constants that have the same form as in the case of 

QCD (13), the QED potential is given by: 

 

𝑉𝑞𝑒𝑑(𝑟) = (
−1

𝐶 −
𝐷

𝑟2

 
1

𝑟
) 𝑒𝑥𝑝((− 

𝛼

6𝜋2
𝐶𝛾

𝐶 −
𝐷

𝑟2

)

1/2

𝑟) 

(18) 

 

where,  

C=(
1

𝑒2
)+(

ln (
𝑚𝑒
𝜆
)

6𝜋2
)        ,   D=(

𝑒2𝜌

6𝜋2
) 

 

and 𝐶𝛾 is the photon mass constant (5) with the upper limit of 

the photon rest mass 3 × 10−53𝑔 (10). 

 

 
Fig. 2 QED Potential Diagram 

 

 

To visualize the detailed structure of the QED potential, for 

instance, for 𝐶 = 1, 𝐷 = 1, and  
𝛼

6𝜋2
𝐶𝛾 = 0.01, the potential 

is presented in Fig. 2 which shows the sharply rising core 

potential at the contact boundary of the electron and positron 

at 𝑟 = √𝐷/𝐶 = 1 as they approach close together. The 

potential becomes imaginary as both particles come close past 

the contact distance and reach a level above zero. This 

behavior of the QED potential is consistent with the electron-

positron pair annihilation as they approach sufficiently close 

together. It should be noted that the sharply rising core 

potential has been employed for the calculation of the “Lamb 

shift” (12) in the form of the 𝛿(𝑟) function in the 

phenomenological model. The parameters C and D determine 

the contact radius of the electron-positron pair, and (
𝛼

6𝜋2
)𝐶𝛾 

determines the depth of the QED potential. By adding the two 

potentials (15) and (18) at typical low-energy hadronic bound 

states, we obtain 

 

𝑉(𝑟) =
−1

𝐶𝑟
+

𝑟

𝐴
      (19) 

 

This result confirms the previously reported non-relativistic 

phenomenological quark potential, which was in good 

agreement with the experimental results in heavy quarkonia 

spectroscopy (13). The QCD potential (15) in Fig. 1 shows a 

small yet finite probability of finding fractional charges at the 

critical distance, which supports the results reported by 

researchers (14). In the case of the QED potential, the 

interaction of the electron with the antimatter positron is 

considered the key to the loss of the quantum probability of the 

electron at close distances which is manifested by the 

imaginary number of the potential. In the case of QCD, the 

quark's loss of quantum probability beyond the distance of the 

hadronic boundary due to the imaginary value of the potential, 

has been confirmed by the absence of fractionally charged 

particles that have never been detected by experiment. The 

derived QCD potential also confirms the prediction of 

spontaneous decay of black hole (11), which is essentially a 

large-scale matter state of the quark-gluon plasma. 

CONCLUSION 

We presented a uniform mathematical procedure to transform 

the perturbative quantum field theories into interaction 

potential model for both QCD and QED respectively by 

utilizing the running coupling constant derived from the 

renormalization group equations within the framework of the 

known Yukawa nuclear potential model and the dynamical 

mass from quantum field theories. Both the QCD and QED 

potentials show sharply reversing curvature of the peak 

potential at the critical distances without the loss of continuity 

and these two different types of potentials confirm the 

experimental data at all ranges including the absence of 

independent quarks and the disappearance of electron and 

positron in QED by the potentials becoming imaginary beyond 

the critical distance. 

ACKNOWLEDGEMENT 

I would like to thank Dr. Martinus Veltman for his memorable 

lectures on the dimensional regularization method for 

renormalization. 

 

  



IJFPS, Vol 12, No 2, pp 29-34, Sept, 2022 E. J. Jeong 

 

34 

 

 

REFERENCES 

't Hooft, G. (1993). A planar diagram theory for strong 

interactions. In The Large N Expansion In Quantum Field 

Theory And Statistical Physics: From Spin Systems to 2-

Dimensional Gravity (pp. 80-92): World Scientific. 

Arnison, G., Albrow, M., Allkofer, O., Astbury, A., Aubert, 

B., Bacci, C., Bezaguet, A. J. P. L. B. (1986). Recent 

results on intermediate vector boson properties at the 

CERN super proton synchrotron collider. 166(4), 484-490.  

Coleman, S. (2022). Sidney Coleman's Lectures on Relativity: 

Cambridge University Press. 

D Liko, I. M., M Pernicka, B Rahbaran. (2012). Search for 

heavy, top-like quark pair production in the dilepton final 

state in pp collisions. Physics Letters B, 716(1), 17.  

Gell-Mann, M., Goldberger, M., & Thirring, W. J. P. R. 

(1954). GELL-MANN 1954. 95, 1612.  

Glashow, S. J. N. P. (1961). GLASHOW 1961. 22, 579.  

Gross, D., Wilczek, F., Weinberg, S., Gell-Mann, M., Low, F., 

Callan, C.,  Nambu, Y. J. P. R. L. (1973). GROSS 1973. 

30, 1343.  

Salam, A., & Ward, J. J. P. R. L. (1967). Phys. Letters 13 

(1964) 168; S. Weinberg. 19(1264), 27.  

Salam, A. J. N. S. (1968). Elementary particle theory, ed. 367.  

Stückelberg, E., & Petermann, A. J. H. P. A. (1953). 

STÜCKELBERG 1953. 26, 499.  

Symanzik, K. J. C. i. m. p. (1971). Small-distance-behaviour 

analysis and Wilson expansions. 23(1), 49-86.  

UA-2 Collab., G. B. e. a. (1983). Phys. Lett, 122B, 476.  

Veltman, M. J. N. P. B. (1972). Regularization and 

renormalization of gauge fields. 44(1), 189-213.  

Weinberg, S. J. P. L. B. (1980). Effective gauge theories. 

91(1), 51-55.  

Weinberg, S. J. P. r. l. (1967). A model of leptons. 19(21), 

1264.  

Wilson, K. G., & Kogut, J. J. P. r. (1974). The renormalization 

group and the ϵ expansion. 12(2), 75-199.  

Wilson, K. G. J. R. o. m. p. (1975). The renormalization group: 

Critical phenomena and the Kondo problem. 47(4), 773. 

 

 


