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ABSTRACT 

In this study, we apply the standard quantization procedure to the Newtonian equation to obtain the Schrödinger equation. The wave function 

is obtained and subsequently the de Broglie-Bohm interpretation is applied to the wave function to yield the formulas for escape speed. It is 

shown that the usual Newtonian formula for escape speed is purely resulted from taking the asymptotic form of Bessel functions. We then 

extend our work to hydrogen atom and show that the work done to eject the electron away from proton is in discrete form. The ionization 

energy for ground state of hydrogen atom from escape kinetic energy method is obtained. 
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INTRODUCTION 

If you toss an object vertically upwards, the object will reach 

its highest point and stop momentarily before falling down. 

However, this is not always the case. If the object has large 

enough speed, it can successfully move away from the Earth 

and never return. The minimum value of speed an object 

requires to escape from a gravitating body is called the escape 

speed. In classical mechanics, we obtain the escape speed of 

an object by applying the conservation of energy. The total 

energy for an object at the surface of any planet must be the 

same as in the outer space. According to Newton’s law of 

gravitation, the gravitational potential energy associated with 

any two objects is given by 
 

𝑃𝐸𝑔 = −
𝐺𝑚1𝑚2

𝑑
   (1) 

 

𝐺 is the Newton’s gravitational constant, 𝑚1 and  𝑚2 are 

masses of spherically symmetric objects 𝑂1 and 𝑂2 

respectively, and 𝑑 is the distance between the two objects. 

Object 𝑂1 must have the kinetic energy 𝐾𝐸1 in order that it can 

escape away from object  𝑂2 . The kinetic energy of the object 

𝑂1 is given by 
 

𝐾𝐸1 =
1

2
𝑚1𝑣2    (2) 

 

where 𝑣 is the speed of object 𝑂1. Thus, the total mechanical 

energy 𝐸 of object 𝑂1 which is escaping from object 𝑂2 is 

given by the following equation (Vuille, Serway, & Faughn, 

2009). 

𝐸 =
1

2
𝑚1𝑣2 −

𝐺𝑚1𝑚2

𝑑
    (3) 

 

From the principle of conservation of energy, the total 

mechanical energy 𝐸 of object 𝑂1 is always a constant value. 

In addition, the value of 𝐸 could be negative, positive or zero. 

If 𝐸 is negative, the object 𝑂1 will be returning back to object 

𝑂2. On the other hand, if 𝐸 is positive or zero, the object 𝑂1 

will be escaping forever from object  𝑂2.  However in the case 

of zero 𝐸, object 𝑂1 will escape away with an initial speed 

which is just large enough to make the speed of 𝑂1 

asymptotically toward zero when it reaches infinity. This 

initial speed is called the escape speed. We set 𝐸 = 0 in 

equation (3) and solve for 𝑣 to obtain the escape speed as 
 

𝑣𝑒𝑠𝑐 = √
2𝐺𝑚2

𝑑
    (4) 

 

People typically apply Newton’s law of motion for studying 

the definite motion of a single macroscopic object. In this 

study, we employ a Schrodinger equation to describe an object 

𝑂1 which is moving in a gravitational field. It seems weird to 

use the Schrodinger equation for illustrating the motion of a 

single object which has a definite trajectory. However, the 

weirdness will be gone if we employ the de Broglie-Bohm 

interpretation (Atiq, Karamian, & Golshani, 2009)  to interpret 

the wave function of Schrodinger equation rather than the 

usual probabilistic Copenhagen interpretation (Griffiths & 

Dick, 1995). This is due to the ability of de Broglie-Bohm 

interpretation to give the exact trajectory of a single particle. 

In the next section, we summarize the de Broglie-Bohm 

interpretation of wave function. In section 3, we write down 

the Schrodinger equation for an object which is moving with 

the escape speed in a gravitational field. We then solve the 

Schrodinger equation for the wave function and obtain the 
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wave function in asymptotic form. Afterwards, we apply the 

de Broglie-Bohm interpretation to the asymptotic form of 

wave function to obtain the formulas for escape speed. In 

section 4, we extend the work to hydrogen atom where the 

ionization energy is found. Finally, we conclude in section 5. 

DE BROGLIE-BOHM INTERPRETATION 
 

Suppose a non-relativistic particle of mass 𝑚 moves in space 

in which it is acted upon by a force −∇𝑉. For simplicity, we 

confine the particle to move in only one spatial dimension. The 

energy equation for this particle is given by 
 

𝐸 =
𝑝2

2𝑚
+ 𝑉   (5) 

 

𝐸, 𝑝 and 𝑚 are the total energy, momentum and mass of the 

particle respectively. In addition, 𝑉 = 𝑉(𝑥, 𝑡) is the potential 

energy where 𝑥 is position of the particle and 𝑡 is time. We 

now employ the standard replacements to replace the total 

energy 𝐸 and momentum 𝑝 in equation (5) by the energy and 

momentum operator which act on the wave function  Ψ(𝑥, 𝑡). 

The energy and momentum operators are given as 
 

�̂� = 𝑖ℏ
∂

∂𝑡
    (6) 

and  

�̂� = −𝑖ℏ
∂

∂𝑥
   (7) 

 

respectively,  where 𝑖 = √−1 is a complex number and ℏ is 

the reduced Planck’s constant. Hence equation (5) would 

become 
 

𝑖ℏ
∂Ψ(𝑥,𝑡)

∂𝑡
= −

ℏ2

2𝑚

∂2Ψ(𝑥,𝑡)

∂2𝑥
+ 𝑉(𝑥, 𝑡)Ψ(𝑥, 𝑡)  (8) 

 

Equation (8) is known as the Schrodinger equation, where we 

may also write it as follows 
 

𝑖ℏ
∂Ψ(𝑥,𝑡)

∂𝑡
= �̂�Ψ(𝑥, 𝑡)  (9) 

 

�̂� = −
ℏ2

2𝑚

∂2

∂2𝑥
+ 𝑉(𝑥, 𝑡) is called the Hamiltonian operator. 

The wave function Ψ(𝑥, 𝑡) can also be written as follows. 
 

Ψ(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) exp [
𝑖𝑆(𝑥,𝑡)

ℏ
]  (10) 

 

𝑅 and 𝑆 here are real functions. Substituting the wave function 

Ψ(𝑥, 𝑡) (10) into (8) and after taking the derivatives, we obtain 

the following two equations from the real and imaginary parts 

(Holland, 1995). 
  

∂𝑆

∂𝑡
+

(∇𝑆)2

2𝑚
+ 𝑉 + 𝑄 = 0   (11) 

and  
∂𝑅2

∂𝑡
+ ∇ ⋅ (𝑅2 ∇𝑆

𝑚
) = 0   (12) 

 

where 𝑄 = −
ℏ2

2𝑚

∇2𝑅

𝑅
. Equation (12) is a continuity equation for 

probability density 𝑅2 (= |Ψ|2) as viewed from the 

Copenhagen interpretation. However, we can regard equation 

(11) as a modified Hamilton-Jacobi equation in which an extra 

potential 𝑄 is added to the usual Hamilton-Jacobi equation. 

Therefore, the particle now is not only acted upon by a 

classical potential but also by an extra potential. Hence we 

could now identify momentum 𝑝 of a particle as  
 

𝑝 =
𝑑𝑆

𝑑𝑥
   (13)  

 

Equation (13) is called guidance equation where 
 

𝑝 =
∂𝐿

∂�̇�
   (14) 

 

Here 𝐿 is the Lagrangian while dot notation denotes 

differentiation with respect to time. This equation plays an 

important role of giving the speed, �̇� and trajectory 𝑥(𝑡) of the 

particle. In fact, the extra potential 𝑄 in equation (11) is 

responsible for all the quantum effects and being named as 

quantum potential. Thus we expect that the quantum potential 

𝑄 will be sufficiently small and negligible in classical regime 

of physics. 

ESCAPE SPEED FOR GRAVITATING OBJECTS  

We start by employing a spherical coordinate system to specify 

the positions of objects 𝑂1 and 𝑂2. However for simplicity, the 

origin of coordinate system is chosen to coincide with the 

centre of object 𝑂2 and object 𝑂1 is allowed to travel only 

along the line of radial coordinate. 
 

 

 
Fig.1: Object 𝑂1 travels along a line of radial coordinate emanating 

from the centre of object  𝑂2.   

 

The total energy of an object 𝑂1 which is escaping from 

another object 𝑂2 is given as follows 
 

𝐸 =
1

2
𝑚1�̇�2 −

𝐺𝑚1𝑚2

𝑟
   (15) 

 

�̇� is the speed of object 𝑂1 travelling along the line of radial 

coordinate. In the study, equation (15) also is the Hamiltonian 

for object 𝑂1, hence we write the Lagrangian 𝐿 for the object 

𝑂1 as follows 
 

𝐿 =
1

2
𝑚1�̇�2 +

𝐺𝑚1𝑚2

𝑟
   (16) 

 

Immediately, we obtain the momentum of object 𝑂1 as follows 

𝑝1𝑟 =
𝑑𝐿

𝑑�̇�
= 𝑚1�̇�   (17) 

 

Consequently, the guidance equation (13) becomes 
 

𝑚1�̇� =
𝑑𝑆

𝑑𝑟
   (18) 

 

Setting the total energy 𝐸 = 0 and rewriting the kinetic energy 

of 𝑂1 in term of momentum Π1𝑟, equation (15) becomes 
Π1𝑟

2

2𝑚1
−

𝐺𝑚1𝑚2

𝑟
= 0  (19) 

 

where Π1𝑟 = 𝑚1�̇�𝑒𝑠𝑐(1) in which �̇�𝑒𝑠𝑐(1) here denotes the 

escape speed of object 𝑂1. We proceed to replace momentum 

Π1𝑟 by an operator −𝑖ℏ ∂/ ∂𝑟 to obtain the following 

Schrodinger equation 
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ℏ2

2𝑚1

𝑑2𝜓

𝑑𝑟2 +
𝐺𝑚1𝑚2𝜓

𝑟
= 0  (20) 

𝜓 is the wave function of object 𝑂1. Solving equation (20) 

gives the wave function 𝜓 as follows   (Polyanin & Zaitsev, 

2002). 

𝜓 = √𝑟 [𝐶1𝐽1 (√
8𝐺𝑚1

2𝑚2𝑟

ℏ2
) + 𝐶2𝑌1 (√

8𝐺𝑚1
2𝑚2𝑟

ℏ2
)]   (21) 

 

where 𝐽1 (√
8𝐺𝑚1

2𝑚2𝑟

ℏ2
) and 𝑌1 (√

8𝐺𝑚1
2𝑚2𝑟

ℏ2
) are Bessel functions 

of first and second kind respectively, of order 1, while 𝐶1 and 

𝐶2 are arbitrary constants. Interestingly, we study two special 

conditions 
 

√
8𝐺𝑚1

2𝑚2𝑟

ℏ2 ≫ 1    (22) 

and  

√
8𝐺𝑚1

2𝑚2𝑟

ℏ2 ≪ 1.    (23) 

 

To have a real physical situation, the arguments of Bessel 

functions cannot equal to zero. These conditions (22) and (23) 

are imposed as in (Lea, 2004) for obtaining the asymptotic 

form of Bessel functions. For these two cases, we set 𝐶1 = 𝐴 

and 𝐶2 = 𝑖𝐴, where 𝐴 is a positive constant. 
  

Case 1 , condition: √
8𝐺𝑚1

2𝑚2𝑟

ℏ2 ≫ 1. The wave function (21) 

reduces to  

𝜓 = 𝐴 (√
𝑟ℏ2

2𝜋2𝐺𝑚1
2𝑚2

)

1

2

 exp [𝑖 (√
8𝐺𝑚1

2𝑚2𝑟

ℏ2 −
3𝜋

4
)]     (24) 

 

We then obtain the phase 
𝑆

ℏ
 of the above wave function (24) 

and write it as follows 

𝑆

ℏ
= √

8𝐺𝑚1
2𝑚2𝑟

ℏ2 −
3𝜋

4
  (25) 

 

We proceed to compute 
𝑑𝑆

𝑑𝑟
 and substitute it into guidance 

equation (18), we obtain an equation as follows  

 

𝑚1�̇�𝑒𝑠𝑐(1) = √
2𝐺𝑚1

2𝑚2

𝑟
   (26) 

 

Finally, solving above equation (26) for escape speed �̇�𝑒𝑠𝑐(1), 

we obtain 

�̇�𝑒𝑠𝑐(1) = √
2𝐺𝑚2

𝑟
   (27)  

 

This is indeed the usual Newtonian formula for escape speed. 

Case 2 , condition: √
8𝐺𝑚1

2𝑚2𝑟

ℏ2 ≪ 1. The wave function (21) 

reduces to  

𝜓 = 𝐴𝑟√
2𝐺𝑚1

2𝑚2

ℏ2 − 𝑖
𝐴

𝜋
√

ℏ2

2𝐺𝑚1
2𝑚2

  (28) 

 

We then compute the phase 
𝑆

ℏ
 of the above wave function (28) 

and write it as follows 
 

𝑆

ℏ
= −tan−1 [

ℏ2

2𝐺𝜋𝑚1
2𝑚2𝑟

]   (29) 

 

We proceed to compute  
𝑑𝑆

𝑑𝑟
. Substituting it into guidance 

equation (18), we obtain an equation as follows 
  

𝑚1�̇�𝑒𝑠𝑐(1) =
(ℏ3 2𝜋𝐺𝑚1

2𝑚2⁄ )

𝑟2[1+(ℏ2 2𝜋𝐺𝑚1
2𝑚2𝑟⁄ )2]

   (30) 

Equation (30) seems to be complicated; however we can 

reduce it to a simpler form by considering the following 

approximation: 1 + (ℏ2 2𝜋𝐺𝑚1
2𝑚2𝑟⁄ )2 ≈ (ℏ2 2𝜋𝐺𝑚1

2𝑚2𝑟⁄ )2. 

The approximation is convincing if the condition (23) is valid. 

Equation (30) thus reduces to 
 

𝑚1�̇�𝑒𝑠𝑐(1) =
(ℏ3 2𝜋𝐺𝑚1

2𝑚2⁄ )

𝑟2(ℏ2 2𝜋𝐺𝑚1
2𝑚2𝑟⁄ )2  (31) 

 

At last, solving above equation (31) for escape speed �̇�𝑒𝑠𝑐(1), 

we get 

�̇�𝑒𝑠𝑐(1) =
2𝜋𝐺𝑚1𝑚2

ℏ
  (32)  

Escape speed (32) has the reduced Planck constant  ℏ, besides 

this, it is independent on the distance  𝑟. However we have to 

keep in mind that equation (32) can only be applied if the 

condition (23) is satisfied.  

ESCAPE SPEED FOR ELECTRON IN HYDROGEN 

ATOM 

The hydrogen atom consists of a proton of charge 𝑞 and an 

electron of charge −𝑞 in which the electric potential energy 

associated with the pair of proton and electron is given by  
 

𝑃𝐸𝑒 = −
𝑘𝑒𝑞2

𝑑
   (33) 

𝑘𝑒 is the Coulomb’s constant. In addition, their gravitational 

potential energy is as follows 
 

𝑃𝐸𝑔 = −
𝐺𝑚𝑒𝑚𝑝

𝑑
   (34) 

 

𝑚𝑒 and 𝑚𝑝 are masses of electron and proton respectively. 

Based on the physical values of constants 𝑚𝑒, 𝑚𝑝, 𝑘𝑒, 𝑞 and 

𝐺, we get 𝑃𝐸𝑒 ≫ 𝑃𝐸𝑔. Therefore we neglect the gravitational 

potential energy. We then employ a spherical coordinate 

system to indicate the position of proton and electron where 

the origin of coordinate system is chosen to coincide with the 

centre of proton. The total energy for an electron which is 

escaping from the proton along the line of radial coordinate is 

given by 

𝐸 =
1

2
𝑚𝑒�̇�2 −

𝑘𝑒𝑞2

𝑟
  (35) 

and the Lagrangian for electron is 
 

𝐿 =
1

2
𝑚𝑒�̇�2 +

𝑘𝑒𝑞2

𝑟
  (36) 

We take an assumption that the electron is ejected along the 

line of radial coordinate. Setting total energy (35) zero and 

rewriting the kinetic energy in term of momentum Π𝑒𝑟, 

equation (35) becomes 
 

Π𝑒𝑟
2

2𝑚𝑒
−

𝑘𝑒𝑞2

𝑟
= 0   (37) 

 

where Π𝑒𝑟 = 𝑚𝑒�̇�𝑒𝑠𝑐(𝑒) in which �̇�𝑒𝑠𝑐(𝑒) denotes the escape 

speed of electron. Then we write down the Schrodinger 

equation as follows 
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ℏ2

2𝑚𝑒

𝑑2𝜓

𝑑𝑟2 +
𝑘𝑒𝑞2𝜓

𝑟
= 0  (38) 

 

The wave function 𝜓 of (38) is given by (Polyanin & Zaitsev, 

2002). 
 

𝜓 = √𝑟 [𝐶1𝐽1 (√
8𝑚𝑒𝑘𝑒𝑞2𝑟

ℏ2 ) + 𝐶2𝑌1 (√
8𝑚𝑒𝑘𝑒𝑞2𝑟

ℏ2 )] (39) 

 

Similar in the previous section, let us now take 𝐶1 = 𝛼 and 

𝐶2 = 𝑖𝛼, where 𝛼 is a positive constant. Besides this, we take 

the assumption of √
8𝑚𝑒𝑘𝑒𝑞2𝑟

ℏ2 ≪ 1. Using the asymptotic form 

of Bessel functions, the wave function (39) becomes 

 

𝜓 = 𝛼𝑟√2𝑚𝑒𝑘𝑒𝑞2 ℏ2⁄ − 𝑖
𝛼

𝜋√2𝑚𝑒𝑘𝑒𝑞2 ℏ2⁄
  (40) 

 

The phase 
𝑆

ℏ
 of the above wave function is calculated and 

written as follows 
𝑆

ℏ
= −tan−1 (

ℏ2

2𝜋𝑚𝑒𝑘𝑒𝑞2𝑟
)  (41) 

As in the last section, 
𝑑𝑆

𝑑𝑟
 is calculated. We thus have a 

following equation:  

𝑚𝑒�̇�𝑒𝑠𝑐(𝑒) =
(ℏ3 2𝜋𝑘𝑒𝑞2𝑚𝑒⁄ )

𝑟2[1+(ℏ2 2𝜋𝑟𝑘𝑒𝑞2𝑚𝑒⁄ )2]
  (42) 

If √
8𝑚𝑒𝑘𝑒𝑞2𝑟

ℏ2 ≪ 1, we have 1 + (ℏ2 2𝜋𝑟𝑘𝑒𝑞2𝑚𝑒⁄ )2 ≈

(ℏ2 2𝜋𝑟𝑘𝑒𝑞2𝑚𝑒⁄ )2. Applying this approximation to equation 

(42), the escape speed of electron in hydrogen atom becomes 
 

�̇�𝑒𝑠𝑐(𝑒) =
2𝜋𝑘𝑒𝑞2

ℏ
   (43) 

 

The kinetic energy of electron when electron starts to escape 

away from the proton is given by 
 

𝐾𝐸𝑖(𝑒) =
𝑚𝑒

2
(

2𝜋𝑘𝑒𝑞2

ℏ
)

2

  (44) 

We obtain the ionization energy (the work done of moving the 

electron away from the proton) as follows 
 

𝐸𝑖𝑜𝑛(𝑒) = −(𝐾𝐸𝑓(𝑒) − 𝐾𝐸𝑖(𝑒))  (45) 
 

𝐾𝐸𝑓(𝑒) (final kinetic energy of electron)  is equal to zero when 

the electron reaches infinity while 𝐾𝐸𝑖(𝑒) (initial kinetic 

energy of electron) is obtained from equation (44).  The 

ionization energy (45) becomes 

𝐸𝑖𝑜𝑛(𝑒) =
4𝜋2𝑘𝑒

2𝑞4𝑚𝑒

2ℏ2   (46) 

 

However, we can write 4𝜋2 as a following series (Spiegel & 

Liu, 1999). 
24

12 +
24

22 +
24

32 +
24

42 +. . . . . . . = 4𝜋2   (47) 

 

Consequently, equation (46) turns out to be  

 

𝐸𝑖𝑜𝑛(𝑒) = 24 [
𝑘𝑒

2𝑞4𝑚𝑒

2ℏ2 (
1

12 +
1

22 +
1

32 +
1

42 +. . . . . . )]    (48) 
 

The first term in the square bracket is the ionization energy for 

ground state of hydrogen atom as from the Bohr model. 

However the ionization energy (48) is appearing in the form of 

summation of many discrete terms.  

DISCUSSIONS AND CONCLUSIONS 

We have shown that the usual Newtonian formula for escape 

speed is purely resulted from taking the asymptotic form of 

Bessel functions. We use formula (27) to calculate escape 

speed of objects for whatever conditions. However in this 

paper, we show that this is simply not true. For instance when 

the condition (23) is obeyed, we need to employ equation (32) 

rather than the usual Newtonian formula (27) to get the escape 

speed.  In this paper, we only consider two special cases where 

the objects’ masses and separation of the objects satisfy one of 

the two conditions (22) or (23). To be more general, we should 

consider the whole Bessel functions and not only the 

asymptotic form of Bessel functions. We then extend the work 

to hydrogen atom. We study the escape speed of electron and 

ionization energy of hydrogen atom. The asymptotic form of 

the wave function is covered for a small range of value of 𝑟 

(few energy levels) and not only for the Bohr radius (lowest 

energy level). Besides this, the energy of electron in hydrogen 

atom is in the discrete form (quantized). We thus find that 

ionization energy (48) is consisting of sum of many discrete 

terms. If we apply the same formalism as done in section 4 to 

section 3.2, we are led to conclude that the energy of object 𝑂1 

is also quantized. The energy for ground state is  𝐸𝑒𝑠𝑐(1) =
𝐺2𝑚1

3𝑚2
2

2ℏ2 . For a system consisting of two gravitating object 

that satisfies the condition (23), the initial kinetic energy 

required by an object to escape infinitely far from another is in 

discrete form.  
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