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ABSTRACT 
The disordered electron-hole recombination in multi-quantum well was investigated using analytical method based on the 
rate equations. The results show extreme broad distribution of the recombination time which depends exponentially on the 

distances between the recombining excitons. The energies at each localised state shows an energy splitting between the 
electronic ground state and the first excited state of 0.0038eV. 
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INTRODUCTION 

All semiconductors possess a certain degree of disorder due 

to their alloy structure and imperfect interfaces. This order 

gives rise to localized state and in turn affects the optical 

properties of the system. Recently, recombination of electron-

hole in a disordered structure (e.g. organic semiconductor 

(Shushin, 2011), graphene bilayer (Efimkin, Kulbachinskii, 

& Lozovik, 2011) e.t.c.) has been the focus of discussion 

because of its importance in constructing electronics device. 

Small disordered one-dimensional structures was the first to 

be investigated (Kramer & MacKinnon, 1999),it was 

discovered that when there is randomness, complete 
localization of non-interacting electrons and holes occur 

which initiated a further research on the interaction of 

electron - hole i.e. conducted at strong coulomb interaction 

(Leadbeater, Römer, & Schreiber, 1999) and weakly 

electron-hole interaction in a random potential 

(Kalyanasundaram & Grätzel, 1998) to produce excitons with 

long and short lifetime respectively. The recombination of 

electron-hole rate in disordered has proven to be important in 

photocatalytic reactions with semiconductor particles, 

rectification, photoconductivity and transistor behavior 

(Kalyanasundaram & Grätzel, 1998). The choice of 𝐺𝑎𝐴𝑠 −
𝐴𝑎1 − 𝑥 𝐴𝐿𝐴𝑠 in this paper is to due to two facts. First, 

reawakening a new dimension into research work of the past 

decade and secondly is because of its potential for 
applications in optoelectronic devices. The effects of type II 

alignment in 𝐺𝑎𝐴𝑠/𝐴𝑙𝐴𝑠 double layer structures was 

achieved by the appropriate choice of the 𝐺𝑎𝐴𝑠 and 𝐴𝑙𝐴𝑠 

layers’ width (Ashoori et al., 1993; Reed, 1993) and was 

initially grown by molecular beam epitaxy (Isu, Jiang, & 

Ploog, 1987; Ohya, Ishida, & Mori, 1984) and metal organic 

chemical vapour deposition (Ishibashi, Kidoguchi, Sugahara, 

& Ban, 2000). In the existing theoretical studies of disordered 

structures, it was assumed that electrons and holes are 

strongly spatially correlated in the form of excitons (Dal Don 
et al., 2004). This assumption is not always valid because of 

variation in the application of the disorder potential. This 

paper is an attempt to present the analytical method based on 

set of rate equations to determine the uncorrelated electrons 

and holes in quantum wells. The simulations in section three 

were done using source codes from Matlab and polynomial 

derivations. 

THEORY 

To enable a better environment for our work, the following 

theoretical assumptions were made. 1) The disorder in 

quantum well of 𝐺𝑎𝐴𝑠 − 𝐴𝑎1−𝑥𝐴𝑙𝐴𝑠 is caused by their alloy 
composition and imperfect interfaces which makes it create a 

set of localized states than trap photo-generated charge 
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carriers. The carriers are captured after photo-generation. 2) 

The carriers can either recombine or perform a photo– 

assisted hopping transition to other localized states. The 

probabilities depend exponentially on the distance involved. 

The rate of recombination with localized hole at a rate is 

 Γ𝜎(𝑅) ≈ 𝜏𝑜
−1 exp  −

2𝑅

𝛼
            (1) 

Where 𝜏𝑜  depends on the particular recombination 

mechanism. In the case of radioactive recombination, 𝜏𝑜  is of 
the order of the exciton radioactive life time. 3) The rate for a 

charge carrier to perform a non radioactive hopping  

transition from an occupied state 𝑖 to an empty localized  

state 𝑗 over a distance 𝑟𝑖𝑗  is determined by the Miller, Blum, 

Glennon, and Burton (1960). 

Γ𝑖𝑗 = 𝑉𝑜exp[−
2𝑟𝑖𝑗

𝛼
−

𝜉𝑗−𝜉𝐼+ 𝜉𝑗−𝜉𝐼 

2𝐾𝑇
        (2) 

Where 𝜉𝑗  and 𝜉𝐼 are the energies of states 𝑗 and 𝑖 

respectively and 𝑉0 is the attempt-to-escape-frequency of the 

1012𝑠−1.  4)  Applying the approach of (Marshall, 2000), one 
divides the energy range where the localized states are 

distributed into a set of m energy slices with a given width 

and formulates the rate equation for carrier densities in those 

energy slices. The time of the carrier concentration 𝑛𝑘  in slice 

number 𝑘 is determined by the equation 
𝑑𝑛𝑘

𝑑𝑡
=   𝑛𝑗 Γ𝑗→𝑘 − 𝑛𝑘Γ𝑘→ − 𝑛𝑘Γ𝜎

𝑚
𝑗=𝑖
𝑗≠𝑘

      (3) 

Where Γ𝑗→𝑘  denotes the rate of a charge carrier transition 

from a state in slice 𝑖 to a state in slice  𝑗, and Γ𝜎  is the 

recombination rate. 5) Considering the transition rate 𝑇𝑘↓ 
from the slice 𝑘 downward in energy, since the transition 

occurs through energy loss hopping; only the tunnelling term 
remains in Eq 2. Therefore, one can write the downward 

transition rate as;  

𝑇𝑘↓ = 𝑉𝑜exp(
−2𝑅𝑘

𝛼
)           (4) 

Where 𝑅𝑘  is the hopping distance determined by energy 

below 𝐸𝑘  . In two dimensional cases it can be estimated as  

𝑅𝑘 =  𝜋 (𝑑𝑗 − 𝑛𝑖 𝑡 )𝑚
𝑖=𝑘  

−1

2         (5) 

Where 𝑑𝑗  denotes the concentration of localized states in 

the energy 𝑗. Using equation 4, we can derive the downward 

hopping rate Γ𝑗→𝑘  between two energy slices as a fraction of 

𝑇𝑘↓.Therefore, the downward in energy transition rates 

between states in two energy slices 𝑘 and  , (𝐸𝑘 > 𝐸𝑗 ) can be 

written in the form  

𝑇𝑘→𝑗 = 𝑉𝑜 exp  
−2𝑅𝑘

𝛼
 ∗

𝑑𝑗−𝑛𝑖 𝑡 

  𝑑𝑗−𝑛𝑖 𝑡  
𝑚
𝑖=𝑘

        (6) 

We can also calculate the transition rate for carriers 

between two slices 𝑗 and 𝑘 upward in energy can be derived 

from downward transition rate 

𝑇𝑘→𝑗 = 𝑇𝑘→𝑗
𝑑𝑘−𝑛𝑘 𝑡 

𝑑𝑗−𝑛𝑖 𝑡 
exp  

𝜉𝑘−𝜉𝑗

𝐾𝑇
           (7) 

Hence, upward in energy transition, the expression 

becomes 

𝑇𝑘→𝑗 = 𝑉𝑜 exp  
−2𝑅𝑘

𝛼
−

𝜉𝑘−𝜉𝑗

𝐾𝑇
 ∗

𝑑𝑗−𝑛𝑖 𝑡 

  𝑑𝑗−𝑛𝑖 𝑡  
𝑚
𝑖=𝑘

    (8)

 

6) If the concentration of charge carriers at time 𝑡 is  𝑛, the 

recombination rate would be of the order Γ𝜎(𝑛−1/2). The 

recombination rate in equation (3) can be expressed as the 

product of the density of filled electron state n and the 

probability 𝑛2 from the filled hole state of a distance α from 
filled electron state n; 

 
Γ𝜎 ≈ 𝜏𝑜

−1𝑛(𝑡)𝛼2           (9) 

Applying Eq3-9 we obtain the luminescence spectrum as; 

𝐼 ℏ𝜔, 𝑡 = 𝛼  𝑛 𝑜 ∞

−∞
 ℏ𝜔 + 𝜉, 𝑡 𝑛 𝑘  𝜉, 𝑡 𝑑𝜉    (10)  

Where 𝑛 𝑜 (𝜉, 𝑡) and 𝑛 𝑘  𝜉, 𝑡  denote the densities of 
electron and holes respectively. 

SIMULATIONS OF DERIVATIONS 

 

 
Figure.1 Effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 > 𝛼 in the second Taylors expansion 

 

 
Figure.2 Effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 > 𝛼 in the second Taylors expansion 

 

 
Figure.3 Effects on the downward energy transition when  

𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the third Taylors expansion 



IJFPS, Vol. 2, No.4, pp. 52-57 , Dec, 2012 M.E.Emetere 

 

54 

 

 
Figure.4 effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧  and R>α in the third Taylors expansion 

 
Figure.5 Effects on the downward energy transition 

when𝑉𝑜 = 1𝐻𝑧  and R>α in the fourth Taylors expansion 

 
Figure.6 Effects on the downward energy transition when  

𝑉𝑜 = 1012𝐻𝑧  and 𝑅 > 𝛼 in the fourth Taylors expansion 

 
Figure.7 Effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 > 𝛼 in the general Taylors expansion 

 
Figure.8 Effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 > 𝛼 in the general Taylors expansion 

 
Figure.9 Downward energy transition when 𝑉𝑜 = 1𝐻𝑧 and 

𝑅 < 𝛼 in the second Taylors expansion 

 
Figure.10 Effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 < 𝛼 in the second Taylors expansion 

 
Figure.11 Downward energy transition when 𝑉𝑜 =

1𝐻𝑧 and 𝑅 < 𝛼 in the third Taylors expansion 
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Figure.12 The downward energy transition when 𝑉𝑜 =

1𝐻𝑧 and 𝑅 < 𝛼 in the general Taylors expansion.  

 
Figure.13 Downward energy transition when 𝑉𝑜 =

1𝐻𝑧 and 𝑅 < 𝛼 in the general Taylors expansion 

 
Figure.14 Downward energy transition when 𝑉𝑜 = 1012𝐻𝑧 

and 𝑅 < 𝛼 in the general Taylors expansion.  

 

The simulations on equations (4) were carried as shown in 

the figure above. The Taylors expansion was applied to 

analyze the features of the various changes in the downward 

energy transitions. Figure (1) describes the effects on the 

downward energy transition when 𝑉𝑜 = 1𝐻𝑧 and 𝑅 > 𝛼 in 

the second Taylors expansion. Figure (2) describes the effects 

on the downward energy transition when 𝑉𝑜 = 1012𝐻𝑧  and 
R>α in the second Taylors expansion. Figure (3) describes 

the effects on the downward energy transition when 𝑉𝑜 =
1𝐻𝑧  and 𝑅 > 𝛼 in the third Taylors expansion. Figure (4) 

describes the effects on the downward energy transition when 

𝑉𝑜 = 1012𝐻𝑧  and 𝑅 > 𝛼 in the third Taylors expansion. 
Figure (5) describes the effects on the downward energy 

transition when 𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the fourth Taylors 

expansion. Figure (6) describes the effects on the downward 

energy transition when 𝑉𝑜 = 1012𝐻𝑧  and R>α in the fourth 
Taylors expansion. Figure (7) describes the effects on the 

downward energy transition when 𝑉𝑜 = 1𝐻𝑧 and R>α in the 

general Taylors expansion. Figure (8) describes the effects on 

the downward energy transition whenVo=1012Hz and R>α in 

the general Taylors expansion. Figure (9) describes the 

effects on the downward energy transition when 𝑉𝑜 =
1𝐻𝑧 and R<α in the second Taylors expansion. Figure (10) 

describes the effects on the downward energy transition when 

𝑉𝑜 = 1𝐻𝑧 and 𝑅 < 𝛼 in the second Taylors expansion. Figure 

(11) describes the effects on the downward energy transition 

when 𝑉𝑜 = 1𝐻𝑧 and 𝑅 < 𝛼 in the third Taylors expansion. 

Figure (12) describes the effects on the downward energy 

transition when𝑉𝑜 = 1𝐻𝑧 and 𝑅 < 𝛼 in the fourth Taylors 

expansion. Figure (13) describes the effects on the downward 

energy transition when 𝑉𝑜 = 1𝐻𝑧 and R<α in the general 

Taylors expansion. Figure (14) describes the effects on the 

downward energy transition when 𝑉𝑜 = 1012𝐻𝑧 and R<α in 
the general Taylors expansion. The values of the downward 

transition energies gotten from the figures above were 
assumed to be equal to the upward transition energies.  

 

 
Figure.15 Diagrammatic representation of the term  

(𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 when  𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the second 

Taylors expansion. 

 
Figure.16 Diagrammatic representation of the term  

(𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 when 𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the general 

Taylors expansion. 

 

The values for the term (𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 for almost all the 

simulations were the same. Two figures (15, 16) were 

highlighted below to explain its features. Figure (15) 
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describes the effects on the term (𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡  when 

𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the second Taylors expansion. 

Figure (16) describes the effects on the term (𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 

when 𝑉𝑜 = 1𝐻𝑧  and 𝑅 > 𝛼 in the general Taylors expansion. 

RESULTS AND DISCUSSION 

Figures (1-4) have the same shape when 𝑅 > 𝛼, which 
shows that beyond the linearity between the localisation 

length (α) and hopping length (R), the possibility of electron-

holes localizing within a site becomes lesser as the attempt- 

to-escape-frequency (𝑉0) increases. At this point, the 

concentration (R) remains constant i.e. 0.2 while the 

localisation length ranges between 0.0012 and 0.0014. Most 

importantly, it shows the time dependence of localisation 

length in a disordered semiconductor. Figures (5, 6) show a 

different feature. It expresses the effects of the disordered 

𝐺𝑎𝐴𝑠 − 𝐴𝑎1 − 𝑥𝐴𝐿𝐴𝑠 on the localisation length, hopping 

length and attempt-to-escape-frequency (𝑉0). The three 

quantities have the same relations (positive parabolic) to one 

another with higher magnitudes. This feature in figures (5, 6) 

simply means that the effect of the localization of the 

particles on various defects caused by either fluctuations in 

the well width or by remote charged impurities at increases 

the calculated lifetime in dependence on the localization 

length, well width, and other input parameters (Citrin, 1993). 

Also, increasing the attempt-to-escape frequency, the 

luminescence lines from the quantum wells are strongly 
shifted towards higher downward transition energies. Figures 

(7, 8) are the resultant effect of figures (1, 6). This shows that 

the indirect recombination time in single quantum wells do 

not only depend on the applied electric field but on other 

parameters as hopping distance. The features (shown in 

figures 9, 14) when 𝑅 < 𝛼 revealed strange progression. 

Figures (9,11,13) whose attempt-to-escape frequency is unity, 

has a gradual overturn of the shape showing the slow 

relaxation of quantum particles through a system of localized 

states which are signatures of transient photoconductivity and 

optical properties of disordered systems (Monroe, 1985; 

Takagahara, 1999). When 𝑉𝑜 = 1012𝐻𝑧 (figures 10, 12, 14), 

𝐺𝑎𝐴𝑠 − 𝐴𝑎1 − 𝑥𝐴𝐿𝐴𝑠 in particular, experiences an energy 

relaxation which ultimately depends on the hopping distance. 

According Baranovskii, Zvyagin, Cordes, Yamasaki, and 

Thomas (2002) in an exponential density of state, the fastest 

upwards transitions occur towards a preferred energy level 

known as the transport energy. Since the hopping transport is 
governed by upwards transitions from filled states near the 

Fermi level to empty states (Godet, 2003), we analyzed a 

balance equilibrium condition (as can be seen in figures 

(15,16)) where (𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 = 200. Secondly, a decrease or 

increase in the attempt-to-escape frequency had no influence 

on the (𝜉𝑘 − 𝜉𝑗 )/𝑘𝑡 . Adopting the experiments of (Golub et 

al., 1999) where the  𝐺𝑎𝐴𝑠 − 𝐴𝑎1 − 𝑥𝐴𝐿𝐴𝑠  sample was 

held in an optical cryostat at temperature 𝑇 = 1.4 𝐾, 𝜉𝑘  and 

 𝜉𝑗  which is the energies at each localized state shows an 

energy splitting between the electronic ground state and the 

first excited state to be 0.0038𝑒𝑉. 

CONCLUSION 

The filling factors of all the energy slices considered are 

time-dependent and are hence, on equilibrium values. It could 

be concluded that the distribution of recombining carriers is 

essentially non equilibrium at low temperatures. We would 
like to mention that  in the system with less disorder, the light 

emission can be treated using semiconductor 

Photoluminescence (PL) equation in Eq (10) (Kira, Jahnke, 

Hoyer, & Koch, 1999). The energy splitting between the 

electronic ground state and the first excited state (0.0038𝑒𝑉) 

enables the peculiarity of the 𝐺𝑎𝐴𝑠 − 𝐴𝑎1 − 𝑥𝐴𝐿𝐴𝑠 

semiconductor to technological advancement in 

optoelectronics. 
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