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ABSTRACT  

 

The Von Neumann entropy plays a central role in the quantum information theory and is a concave function and following the 

property 0 <  ∑ 𝑆(𝜆𝑖𝜌𝑖)𝑖∈1 − ∑ 𝜆𝑖𝑆(𝜌𝑖)𝑖∈1 ≤ −∑ 𝜆𝑖(log 𝜆𝑖)𝑖∈1  . In this paper, we introduce a new proof for the linearity of Von 

Neumann entropy in the rate without using the above inequality. Here the Von Neumann entropy is concave; that is, given 

weights  0 ≤  𝜆𝑖 , 𝑖 ∈ 𝐼, ∑ 𝜆𝑖 = 1𝑖∈1  and density matrices 𝜌𝑖 ∈ 𝐵1
+(𝐻). Roughly speaking, we will show that in the rate case, the 

Von Neumann entropy is linear without using Fannes inequality. 
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INTRODUCTION 

Johann Von Neumann first presented the extension of classical 

Gibbs entropy in quantum statistical mechanics in the famous 

book published in 1932 (Neumann, 2013) and he described the 

entropy by a density matrix (Jaynes, 1965). 

 

𝑆(𝜌) = −𝑇𝑟(𝜌 ln𝜌)          (1) 

 

Where 𝜌 is, the one-particle reduced density matrix and 𝑇𝑟 has 

the usual meaning of the trace of a matrix, and ln is the natural 

matrix logarithm.  

A density matrix is a matrix that describes the statistical state 

of a system in quantum mechanics. If we consider the spectral 

decomposition of 𝜌 as, 

 

𝜌 = ∑  𝑟𝑗|𝑟𝑗⟩⟨𝑟𝑗|𝑗           (2) 

 

Then according to the Clausius Statement, the change of 

entropy of a system obtained by adding the small portions of 

heat quantity received by the system divided by the absolute 

temperature during the heat absorption. In addition, entropy, 

in intuition, is an amount of uncertainty respect to a physical 

system, which plays a central role in many fields of physics, 
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mathematics and information theory. In the classical systems, 

the concept of information entropy introduced by Claude 

Shannon (Shannon, 1948) in 1948, although its origin goes 

back to Pauli and Von Neumann (von NEUMANN & BEYER, 

1955). Von Neumann introduced the entropy of a quantum 

state. Shannon, Kullback (Kullback, 1968), and Von Neumann 

entropies are typical information theory tools, designed to 

quantify the information content and possibly information loss 

for various classical and quantum systems in a specified state 

(Garbaczewski, 2005). The Von Neumann entropy is 

continuous and represented by Fannes inequality in 1973 

(Shannon, 1948) and 2004 (von NEUMANN & BEYER, 

1955). Of course, the Von Neumann definition is based on 

Shannon definition. Therefore, new trends will be interesting 

about entropy. One of them is that what is happen to the Von 

Neumann entropy in the rate case? It is known that it is linear.  

In this paper, we will give a new proof to linearity of it. It is a 

well concept to describe the quantum-mechanical system by a 

density matrix 𝜌 . 

 

𝑆(𝜌) = −𝑇𝑟(𝜌 log 𝜌)         (3) 

 

Where 𝜌, is the one-particle reduced density matrix and 𝑇𝑟 has 

the usual meaning of the trace of a matrix, and log is the natural 

matrix logarithm. If we consider the spectral decomposition of 

𝜌 as, 

 

𝜌 = ∑  𝑟𝑗|𝑟𝑗⟩⟨𝑟𝑗|𝑗           (4) 

 

Then the Von Neumann entropy of 𝜌 is the Shannon entropy 

(Shannon, 1948) of the probability distribution corresponding 

to its spectrum 

 

𝑆(𝜌) = −𝑇𝑟(𝜌 ln 𝜌) =  − ∑  𝑟𝑗  𝑙𝑜𝑔(𝑟𝑗)𝑗       (5) 

 

The Von Neumann entropy plays a central role, not only in 

physics and in mathematics but also it will be surprisingly in 

many fields, specially, in quantum information theory(Jaeger, 

2007; Nielsen & Chuang, 2000). Here we provide a new 

simple proof to the Von Neumann entropy based on the 

logarithms properties and without using Fannes inequality 

(Audenaert, 2007; Tomamichel, Colbeck, & Renner, 2010). 

Since the Von Neumann entropy, is nonlinear, then it is 

interesting linear in rate.  

Example 1: Let us consider the following density matrix (after 

normalization). 

 

𝜂 = ∑ 𝛿(3𝑛) (
𝜌⨂𝑛+𝜎⨂𝑛

2
)∞

𝑛=2 + 𝛿(3𝑛 + 1)𝜌⨂𝑛 + 𝛿(3𝑛 +

2)𝜎⨂𝑛    

(6) 

 

Where 𝛿(𝑛) =
1

𝑛(log𝑛)2
 . Now, 𝛿(3𝑛) (

𝜌⨂𝑛+𝜎⨂𝑛

2
) ≤  𝜂. Then, 

we have 

 

− log 𝜂 ≤  − log (
𝜌⨂𝑛+𝜎⨂𝑛

2
) − log 𝛿(3𝑛)     (7) 

 

Therefore 

 

𝐺 (
𝜌⨂𝑛+𝜎⨂𝑛

2
) ≤ 𝑆 (

𝜌⨂𝑛+𝜎⨂𝑛

2
) − log 𝛿(3𝑛)      (8) 

 

Where 𝐺(𝜌) = −𝑇𝑟(𝜌 log 𝜂) and 𝑆(𝜌) = −𝑇𝑟(𝜌 log 𝜌). On 

the other hand, it is known that 𝑇𝑟[𝜌(log 𝜌 − log 𝜎)] ≥ 0. 

Therefore, 

 

𝑆 (
𝜌⨂𝑛+𝜎⨂𝑛

2
) ≤ 𝐺 (

𝜌⨂𝑛+𝜎⨂𝑛

2
)         (9) 

 

Like the above relations, we have 

 

𝑆 (𝜌⨂𝑛) ≤  𝐺(𝜌⨂𝑛)  ≤ 𝑆 (𝜌⨂𝑛) − log 𝛿(3𝑛 + 1)      

 (10) 

and 

 

𝑆 (𝜎⨂𝑛) ≤  𝐺(𝜎⨂𝑛)  ≤ 𝑆 (𝜎⨂𝑛) − log 𝛿(3𝑛 + 2)    

 (11) 

  

𝐺 is linear and so we can find the following relation 

 

𝑆 (
𝜌⨂𝑛 + 𝜎⨂𝑛

2
) − 𝑆 (𝜌⨂𝑛) − 𝑆 (𝜎⨂𝑛) + log 𝛿(3𝑛 + 1)

+ log 𝛿(3𝑛 + 2) ≤  0 

(12) 

and 

 

0 ≤ 𝑆 (
𝜌⨂𝑛+𝜎⨂𝑛

2
) − 𝑆 (𝜌⨂𝑛) − 𝑆 (𝜎⨂𝑛) − log 𝛿(3𝑛)    

 (13) 

 

Since, the limits of  
1

𝑛
log 𝛿(3𝑛), 

1

𝑛
log 𝛿(3𝑛 + 1) and 

1

𝑛
log 𝛿(3𝑛 + 2) are zero, then we get, 

 

lim
𝑛→∞

(
1

𝑛
) 𝑆 (

𝜌⨂𝑛 + 𝜎⨂𝑛

2
)

= lim
𝑛→∞

(
1

𝑛
) 𝑆(𝜌⨂𝑛) + lim

𝑛→∞
(
1

𝑛
) 𝑆(𝜎⨂𝑛) 

(14) 

 

we can extend it for a fix 𝑘 as follows 

 

lim
𝑛→∞

(
1

𝑛
) 𝑆 (

𝜌1
⨂𝑛 + 𝜌2

⨂𝑛 +⋯+ 𝜌𝑘
⨂𝑛

𝑘
) 

 

= lim
𝑛→∞

(
1

𝑛
) [
𝑆(𝜌1

⨂𝑛) + 𝑆(𝜌2
⨂𝑛) +⋯+ 𝑆(𝜌𝑘

⨂𝑛)

𝑘
] 

 

(15) 

For example, let us consider the density matrix  𝜌 (in simple 

case) defined as follows 

 

𝜌 =  𝜆1 |010010010 . . . 010010⏞              
𝑛

>< 010010…010010| 

+𝜆2 |000111000111 . . . 000111⏞                  
𝑛

> 

< 000111000…0000111|    

(16) 

Then we have 
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lim
n→∞

 
1

𝑛
 𝐼𝑐(𝜌, 𝜙) =

1

3
 𝜆1𝐼𝑐 (|010010 >

< 010010|, 𝜙) +𝜆2𝐼𝑐 (|000111 >
< 000111|) 

(17) 

 

Example 2: We consider the density matrix 𝜂 denoted by 

 

𝜂𝑛 = ∑𝜆𝑖1,𝑖2,… 𝑖𝑛  𝜌𝑖1 ⨂ 𝜌𝑖1 ⨂… ⨂ 𝜌𝑖𝑛      (18) 

 

where  𝜌𝑖𝑗 = 𝜌1, 𝜌2, …  𝜌𝑘 for a fix 𝑘 ≤  √𝑛 . Using the above 

process, then we can have 

 

lim
n→∞

 
1

𝑛
 𝐼𝑐(𝜂

𝑛, 𝜙) = lim
n→∞

 
1

𝑛
 [(𝑛1𝑆(𝜌1) + 𝑛2𝑆(𝜌2) + ⋯

+ 𝑛𝑘𝑆(𝜌𝑘)] 
(19) 

 

where 𝑛1 + 𝑛2 +⋯+ 𝑛𝑘 = 𝑛. For example in the case of 𝑘 =
2 , we have  

 

lim
n→∞

 
1

𝑛
 𝐼𝑐(𝜂

𝑛, 𝜙) = lim
n→∞

 
1

𝑛
 [(𝑙𝑆(𝜌1) + (𝑛 − 𝑙)𝑆(𝜌2)]    

 (20) 

 

Now, let (𝜌𝑛) be a density matrix on 𝐵(𝐻) which can be 

entangled. If we want to construct new density, matrices from 

it to compute the maximum in quantum capacity like the 

following 

𝜂𝑛 = ∑ 𝜆𝑖𝑈𝑖𝜌 𝑈𝑖
†,𝑘≤ √𝑛

𝑖=1         (21) 

 

then we have  

 

lim
n→∞

 
1

𝑛
 𝑆(𝜂𝑛) =  lim

n→∞
 
1

𝑛
 𝜆𝑖𝑆 (𝑈𝑖𝜌 𝑈𝑖

†, 𝜙) = 𝑆(𝜌, 𝜙) 

(22) 

 

Of course, it can be extend more than one density matrix as 

generator. 

THE PROOF OF THEOREM: (for 𝑘𝑛 ≤ 2
√𝑛 ) 

Theorem 1.  

Let us consider the set of density matrices, 

𝜌1
(𝑛)
 ,  𝜌2

(𝑛)
 , … ,  𝜌𝑘𝑛

(𝑛)
 on Hilbert space with dimension  2𝑛 , 

where 𝑘𝑛 ≤ 2
√𝑛 . Then we have 2 

 

lim
n→∞

 
1

𝑛
 𝑆(∑ 𝜆𝑖

(𝑛)
𝜌𝑖
(𝑛)𝑘𝑛

𝑖=1 ) =  lim
n→∞

 
1

𝑛
 ∑ 𝜆𝑖

(𝑛)
𝑆 (𝜌𝑖

(𝑛)
)

𝑘𝑛
𝑖=1     

 (22) 

Where 𝑆 is the Von Neumann entropy and  ∑ 𝜆𝑖
(𝑛)
= 1

𝑘𝑛
𝑖=1  , for 

any 𝑛. 

 

Proof: Let us define the density matrix 𝜂 as follows 

𝜂 = ∑𝛿(𝑙𝑛−1)(𝜆1
(𝑛)𝜌1

(𝑛)+𝜆2
(𝑛)𝜌2

(𝑛) +⋯ 𝜆𝑘𝑛
(𝑛)𝜌𝑘𝑛

(𝑛)) +

∞

𝑛=2

 

+𝛿(𝑙𝑛−1 + 1)𝜌1
(𝑛) +⋯+ 𝛿(𝑙𝑛−1 + 𝑘𝑛)𝜌𝑘𝑛

(𝑛)
      

(23) 

Where 𝑙𝑛−1 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛−1 + 𝑛 − 1 and  𝛿(𝑛) =
1

𝑛 𝑙𝑜𝑔𝑛
2 . 

 

Let us define 𝐺(𝜌) = −𝑇𝑟(𝜌 log 𝜂) , for any density matrix 𝜌. 

Now, we have  

𝛿(𝑙𝑛−1 + 𝑖)𝜌𝑖
(𝑛) ≤  𝜂        (24) 

Therefore, 

  

− log 𝜂  ≤  − log 𝛿( (𝑙𝑛−1 + 𝑖) − log 𝜌𝑖
(𝑛)

     (25) 

 

and we get 

 

− log 𝜂  ≤  − log 𝜂(𝑛) − log 𝛿(𝑙𝑛−1)      (26) 

 

where  𝜂(𝑛) = 𝜆1
(𝑛)𝜌1

(𝑛) + 𝜆2
(𝑛)𝜌2

(𝑛) +⋯+ 𝜆𝑘𝑛
(𝑛)𝜌𝑘𝑛

(𝑛)
 then we 

have,  

 

𝐺(𝜌𝑖
(𝑛)
)  ≤ 𝑆(𝜌𝑖

(𝑛)
) − log 𝛿(𝑙𝑛−1 + 𝑖)   ,   (𝑖 = 1,2, … 𝑘𝑛) 

 

  (27) 

and 

𝐺(𝜂(𝑛))  ≤ 𝑆(𝜂(𝑛)) − log 𝛿(𝑙𝑛−1)      (28) 

 

Using the positivity of relative entropy, we have, 

 

𝐺(𝜌𝑖
(𝑛)
)  ≥ 𝑆(𝜌𝑖

(𝑛)
)        (29) 

 

and  

𝐺(𝜂(𝑛))  ≥ 𝑆(𝜂(𝑛))        (30) 

Therefore, 

 

𝑆(𝜌𝑖
(𝑛)
) ≤  𝐺(𝜌𝑖

(𝑛)) ≤  𝑆(𝜌𝑖
(𝑛)) − log 𝛿(𝑙𝑛−1 + 𝑖) ,    

 

𝑖 = 1,2, … , 𝑘𝑛 

(31) 

and 

 

𝑆(𝜂(𝑛)) ≤  𝐺(𝜂(𝑛)) ≤  𝑆(𝜂(𝑛)) − log 𝛿(𝑙𝑛−1)      (32) 

 

But, G is linear and hence 

 

𝑆(𝜂(𝑛)) −∑𝜆𝑖
(𝑛)𝑆 (𝜌𝑖

(𝑛))

𝑘𝑛

𝑖=1

+∑𝜆𝑖
(𝑛) log 𝛿(𝑙𝑛−1

𝑘𝑛

𝑖=1

+ 𝑖)∑𝜆𝑖
(𝑛) log 𝛿(𝑙𝑛−1 + 𝑖)

𝑘𝑛

𝑖=1

≤  0 

(33) 

and 

0 ≤  𝑆(𝜂(𝑛)) −∑𝜆𝑖
(𝑛)𝑆 (𝜌𝑖

(𝑛))

𝑘𝑛

𝑖=1

−∑𝜆𝑖
(𝑛) log 𝛿(𝑙𝑛−1)

𝑘𝑛

𝑖=1

 

    (34) 

It is clear that  𝑙𝑛−1 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛−1 + 𝑛 − 1 ≤

𝑛2√𝑛 + 𝑛 − 1 ≤  2√𝑛+1 , therefore 
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lim
n→∞

 
1

𝑛
  log 𝛿(𝑙𝑛−1) ≤  lim

n→∞
 
1

𝑛
 log 𝛿(2√𝑛+1)      (35) 

 

Analogously, 

 

 0 ≥     lim
           n→∞

 
1

𝑛
 ∑𝜆𝑖

(𝑛) log 𝛿(𝑙𝑛−1 + 𝑖)

𝑘𝑛

𝑖=1

≥ lim
n→∞

 
1

𝑛
 ∑𝜆𝑖

(𝑛) log 𝛿(𝑙𝑛−1 + 𝑘𝑛)

𝑘𝑛

𝑖=1

≥ lim
n→∞

 
1

𝑛
  log 𝛿(𝑙𝑛−1 + 𝑘𝑛) = 0 

(36) 

Corollary: In the simple case for density matrices, 

𝜌1
⨂𝑛,  𝜌2

⨂𝑛 , …   𝜌
2√𝑛
⨂𝑛

, we have 

 

lim
n→∞

 (
1

𝑛
) 𝑆 (

𝜌1
⨂𝑛 +  𝜌2

⨂𝑛 + …+  𝜌
2√𝑛
⨂𝑛

2√𝑛
)

= lim
n→∞

 (
1

𝑛
)(
𝑆(𝜌1

⨂𝑛) + 𝑆( 𝜌2
⨂𝑛) +⋯+ 𝑆 ( 𝜌

2√𝑛
⨂𝑛 )

2√𝑛
) 

(37) 

Now, let us consider the separable density matrix 𝜂𝑛 defined 

by 

𝜂𝑛 = ∑ 𝜆𝑖𝜌𝑖1
2√𝑛

𝑖=1 ⊗𝜌𝑖1⨂𝜌𝑖2 … ⨂𝜌𝑖𝑛     (38) 

 

where   𝜌𝑖𝑗 = 𝜌1, 𝜌2, …    for the simple case, and ∑ 𝜆𝑖 = 1𝑖 . 

For Example 

 

𝜂(𝑛) = 𝜆1𝜌1
(𝑛)
+ 𝜆2𝜌2

(𝑛)
+⋯+ 𝜆

2√𝑛
 𝜌
2√𝑛
(𝑛)       (39) 

Where, for example, 

 

𝜌1
(𝑛)
= 𝜌1⨂𝜌1 ⨂ 𝜌1  ⨂𝜌1 ⨂ 𝜌1 . . . ⨂ 𝜌1 ⏟                      

𝑛  𝑡𝑖𝑚𝑒𝑠

     (40) 

 

 

𝜌1
(𝑛)
=   𝜌1⨂𝜌2⨂𝜌1⨂𝜌2 .  .  . 𝜌1⨂𝜌2       (41) 

 

 

 𝜌
2√𝑛
(𝑛)

= 𝜌2⨂𝜌2⨂𝜌2⨂𝜌2 .  .  . 𝜌2⨂𝜌2      (42) 

 

Using the above process we can get 

 

lim
n→∞

 
1

𝑛
𝐼𝑐( 𝜂

(𝑛), 𝜙 )

= lim
n→∞

1

𝑛2√𝑛
 (𝑛1𝐼𝑐(𝜌1, 𝜙 ) + 𝑛2𝐼𝑐(𝜌2, 𝜙 ))  

    (43) 

 

where  𝑛1 + 𝑛2 = 𝑛2
√𝑛

  and  𝜙 is quantum channel and 𝐼𝑐 is 

coherent information. 

CONCLUSION 

Here we introduced a new proof for the linearity of Von 

Neumann entropy in the rate without using inequality. Since 

the Von Neumann entropy, is concave and is, given weights  

0 ≤  𝜆𝑖 , 𝑖 ∈ 𝐼, ∑ 𝜆𝑖 = 1𝑖∈1  and density matrices 𝜌𝑖 ∈ 𝐵1
+(𝐻) 

therefor in the rate case, the Von Neumann entropy is linear 

without using Fannes inequality. 
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